Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Mol Psychiatry ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532008

RESUMO

Cognitive dysfunctions are core-enduring symptoms of schizophrenia, with important sex-related differences. Genetic variants of the DTBPN1 gene associated with reduced dysbindin-1 protein (Dys) expression negatively impact cognitive functions in schizophrenia through a functional epistatic interaction with Catechol-O-methyltransferase (COMT). Dys is involved in the trafficking of dopaminergic receptors, crucial for prefrontal cortex (PFC) signaling regulation. Moreover, dopamine signaling is modulated by estrogens via inhibition of COMT expression. We hypothesized a sex dimorphism in Dys-related cognitive functions dependent on COMT and estrogen levels. Our multidisciplinary approach combined behavioral-molecular findings on genetically modified mice, human postmortem Dys expression data, and in vivo fMRI during a working memory task performance. We found cognitive impairments in male mice related to genetic variants characterized by reduced Dys protein expression (pBonferroni = 0.0001), as well as in male humans through a COMT/Dys functional epistatic interaction involving PFC brain activity during working memory (t(23) = -3.21; pFDR = 0.004). Dorsolateral PFC activity was associated with lower working memory performance in males only (p = 0.04). Also, male humans showed decreased Dys expression in dorsolateral PFC during adulthood (pFDR = 0.05). Female Dys mice showed preserved cognitive performances with deficits only with a lack of estrogen tested in an ovariectomy model (pBonferroni = 0.0001), suggesting that genetic variants reducing Dys protein expression could probably become functional in females when the protective effect of estrogens is attenuated, i.e., during menopause. Overall, our results show the differential impact of functional variants of the DTBPN1 gene interacting with COMT on cognitive functions across sexes in mice and humans, underlying the importance of considering sex as a target for patient stratification and precision medicine in schizophrenia.

2.
Brain Behav Immun ; 107: 385-396, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36400332

RESUMO

Mounting evidence suggests a link between gut microbiota abnormalities and post-traumatic stress disorder (PTSD). However, whether and how the gut microbiota influences PTSD susceptibility is poorly understood. Here using the arousal-based individual screening model, we provide evidence for pre-trauma and post-trauma gut microbiota alterations in susceptible mice exhibiting persistent PTSD-related phenotypes. A more in-depth analysis revealed an increased abundance of bacteria affecting brain processes including myelination, and brain systems like the dopaminergic neurotransmission. Because dopaminergic dysfunctions play a key role in the pathophysiological mechanisms subserving PTSD, we assessed whether these alterations in gut microbiota composition could be associated with abnormal levels of metabolites inducing dopaminergic dysfunctions. We found high levels of the l-tyrosine-derived metabolite p-cresol exclusively in the prefrontal cortex of susceptible mice. We further uncovered abnormal levels of dopamine and DOPAC, together with a detrimental increase of dopamine D3 receptor expression, exclusively in the prefrontal cortex of susceptible mice. Conversely, we observed either resilience mechanisms aimed at counteracting these p-cresol-induced dopaminergic dysfunctions or myelination-related resilience mechanisms only in the prefrontal cortex of resilient mice. These findings reveal that gut microbiota abnormalities foster trauma susceptibility and thus it may represent a promising target for therapeutic interventions.


Assuntos
Dopamina , Camundongos , Animais
3.
Mol Psychiatry ; 27(10): 4201-4217, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35821415

RESUMO

The mechanisms underlying the dichotomic cortical/basal ganglia dopaminergic abnormalities in schizophrenia are unclear. Astrocytes are important non-neuronal modulators of brain circuits, but their role in dopaminergic system remains poorly explored. Microarray analyses, immunohistochemistry, and two-photon laser scanning microscopy revealed that Dys1 hypofunction increases the reactivity of astrocytes, which express only the Dys1A isoform. Notably, behavioral and electrochemical assessments in mice selectively lacking the Dys1A isoform unraveled a more prominent impact of Dys1A in behavioral and dopaminergic/D2 alterations related to basal ganglia, but not cortical functioning. Ex vivo electron microscopy and protein expression analyses indicated that selective Dys1A disruption might alter intracellular trafficking in astrocytes, but not in neurons. In agreement, Dys1A disruption only in astrocytes resulted in decreased motivation and sensorimotor gating deficits, increased astrocytic dopamine D2 receptors and decreased dopaminergic tone within basal ganglia. These processes might have clinical relevance because the caudate, but not the cortex, of patients with schizophrenia shows a reduction of the Dys1A isoform. Therefore, we started to show a hitherto unknown role for the Dys1A isoform in astrocytic-related modulation of basal ganglia behavioral and dopaminergic phenotypes, with relevance to schizophrenia.


Assuntos
Dopamina , Disbindina , Esquizofrenia , Animais , Camundongos , Astrócitos/metabolismo , Gânglios da Base/metabolismo , Dopamina/metabolismo , Disbindina/metabolismo , Esquizofrenia/genética
4.
Int J Mol Sci ; 24(10)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37240042

RESUMO

Cognitive impairment in schizophrenia remains a clinically and pharmacologically unsolved challenge. Clinical and preclinical studies have revealed that the concomitant reduction in dysbindin (DYS) and dopamine receptor D3 functionality improves cognitive functions. However, the molecular machinery underlying this epistatic interaction has not yet been fully elucidated. The glutamate NMDA receptors and the neurotrophin BDNF, with their established role in promoting neuroplasticity, may be involved in the complex network regulated by the D3/DYS interaction. Furthermore, as inflammation is involved in the etiopathogenesis of several psychiatric diseases, including schizophrenia, the D3/DYS interaction may affect the expression levels of pro-inflammatory cytokines. Thus, by employing mutant mice bearing selective heterozygosis for D3 and/or DYS, we provide new insights into the functional interactions (single and synergic) between these schizophrenia susceptibility genes and the expression levels of key genes for neuroplasticity and neuroinflammation in three key brain areas for schizophrenia: the prefrontal cortex, striatum, and hippocampus. In the hippocampus, the epistatic interaction between D3 and DYS reversed to the wild-type level the downregulated mRNA levels of GRIN1 and GRIN2A were observed in DYS +/- and D3 +/- mice. In all the areas investigated, double mutant mice had higher BDNF levels compared to their single heterozygote counterparts, whereas D3 hypofunction resulted in higher pro-inflammatory cytokines. These results may help to clarify the genetic mechanisms and functional interactions involved in the etiology and development of schizophrenia.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Receptores de Dopamina D3 , Camundongos , Animais , Receptores de Dopamina D3/genética , Receptores de Dopamina D3/metabolismo , Disbindina/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Doenças Neuroinflamatórias , Encéfalo/metabolismo , Plasticidade Neuronal/genética
5.
Int J Mol Sci ; 23(14)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35887100

RESUMO

Intestinal cell dysfunctions involved in obesity and associated diabetes could be correlated with impaired intestinal cell development. To date, the molecular mechanisms underlying these dysfunctions have been poorly investigated because of the lack of a good model for studying obesity. The main aim of this study was to investigate the effects of lipotoxicity on intestinal cell differentiation in small intestinal organoid platforms, which are used to analyze the regulation of cell differentiation. Mouse intestinal organoids were grown in the presence/absence of high palmitate concentrations (0.5 mM) for 48 h to simulate lipotoxicity. Palmitate treatment altered the expression of markers involved in the differentiation of enterocytes and goblet cells in the early (Hes1) and late (Muc2) phases of their development, respectively, and it modified enterocytes and goblet cell numbers. Furthermore, the expression of enteroendocrine cell progenitors (Ngn3) and I cells (CCK) markers was also impaired, as well as CCK-positive cell numbers and CCK secretion. Our data indicate, for the first time, that lipotoxicity simultaneously influences the differentiation of specific intestinal cell types in the gut: enterocytes, goblet cells and CCK cells. Through this study, we identified novel targets associated with molecular mechanisms affected by lipotoxicity that could be important for obesity and diabetes therapy.


Assuntos
Diabetes Mellitus , Organoides , Animais , Diferenciação Celular , Diabetes Mellitus/metabolismo , Mucosa Intestinal , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Organoides/metabolismo , Palmitatos/metabolismo , Palmitatos/farmacologia
6.
Int J Mol Sci ; 22(10)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068160

RESUMO

Post-traumatic stress disorder (PTSD) is a neuropsychiatric disorder occurring in susceptible individuals following a traumatic event. Understanding the mechanisms subserving trauma susceptibility/resilience is essential to develop new effective treatments. Increasing evidence suggests that non-coding RNAs, such as microRNAs (miRNAs), may play a prominent role in mediating trauma susceptibility/resilience. In this study, we evaluated the transcriptional expression of two key PTSD-related genes (FKBP5 and BDNF) and the relative targeting miRNAs (miR-15a-5p, miR-497a-5p, miR-511-5p, let-7d-5p) in brain areas of PTSD-related susceptible and resilient mice identified through our recently developed mouse model of PTSD (arousal-based individual screening (AIS) model). We observed lower transcript levels of miR-15a-5p, miR-497a-5p, and miR-511a-5p in the hippocampus and hypothalamus of susceptible mice compared to resilient mice, suggesting that the expression of these miRNAs could discriminate the two different phenotypes of stress-exposed mice. These miRNA variations could contribute, individually or synergically, to the inversely correlated transcript levels of FKBP5 and BDNF. Conversely, in the medial prefrontal cortex, downregulation of miR-15a-5p, miR-511-5p, and let-7d-5p was observed both in susceptible and resilient mice, and not accompanied by changes in their mRNA targets. Furthermore, miRNA expression in the different brain areas correlated to stress-induced behavioral scores (arousal score, avoidance-like score, social memory score and PTSD-like score), suggesting a linear connection between miRNA-based epigenetic modulation and stress-induced phenotypes. Pathway analysis of a miRNA network showed a statistically significant enrichment of molecular processes related to PTSD and stress. In conclusion, our results indicate that PTSD susceptibility/resilience might be shaped by brain-area-dependent modulation of miRNAs targeting FKBP5, BDNF, and other stress-related genes.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , MicroRNAs/genética , Resiliência Psicológica , Transtornos de Estresse Pós-Traumáticos/patologia , Proteínas de Ligação a Tacrolimo/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transtornos de Estresse Pós-Traumáticos/genética , Transtornos de Estresse Pós-Traumáticos/metabolismo , Proteínas de Ligação a Tacrolimo/genética
7.
Int J Mol Sci ; 22(13)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206340

RESUMO

Intestinal organoids are used to analyze the differentiation of enteroendocrine cells (EECs) and to manipulate their density for treating type 2 diabetes. EEC differentiation is a continuous process tightly regulated in the gut by a complex regulatory network. However, the effect of chronic hyperglycemia, in the modulation of regulatory networks controlling identity and differentiation of EECs, has not been analyzed. This study aimed to investigate the effect of glucotoxicity on EEC differentiation in small intestinal organoid platforms. Mouse intestinal organoids were cultured in the presence/absence of high glucose concentrations (35 mM) for 48 h to mimic glucotoxicity. Chronic hyperglycemia impaired the expression of markers related to the differentiation of EEC progenitors (Ngn3) and L-cells (NeuroD1), and it also reduced the expression of Gcg and GLP-1 positive cell number. In addition, the expression of intestinal stem cell markers was reduced in organoids exposed to high glucose concentrations. Our data indicate that glucotoxicity impairs L-cell differentiation, which could be associated with decreased intestinal stem cell proliferative capacity. This study provides the identification of new targets involved in new molecular signaling mechanisms impaired by glucotoxicity that could be a useful tool for the treatment of type 2 diabetes.


Assuntos
Diferenciação Celular , Células Enteroendócrinas/metabolismo , Hiperglicemia/complicações , Intestino Delgado/metabolismo , Organoides , Animais , Diabetes Mellitus Tipo 2/complicações , Células Enteroendócrinas/efeitos dos fármacos , Células Enteroendócrinas/fisiologia , Glucose/metabolismo , Glucose/toxicidade , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/fisiopatologia , Células L , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais
8.
Int J Mol Sci ; 21(5)2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-32121029

RESUMO

Blood-retinal barrier (BRB) dysfunction represents one of the most significant changes occurring during diabetic retinopathy. We set up a high-reproducible human-based in vitro BRB model using retinal pericytes, retinal astrocytes, and retinal endothelial cells in order to replicate the human in vivo environment with the same numerical ratio and layer order. Our findings showed that high glucose exposure elicited BRB breakdown, enhanced permeability, and reduced the levels of junction proteins such as ZO-1 and VE-cadherin. Furthermore, an increased expression of pro-inflammatory mediators (IL-1ß, IL-6) and oxidative stress-related enzymes (iNOS, Nox2) along with an increased production of reactive oxygen species were observed in our triple co-culture paradigm. Finally, we found an activation of immune response-regulating signaling pathways (Nrf2 and HO-1). In conclusion, the present model mimics the closest human in vivo milieu, providing a valuable tool to study the impact of high glucose in the retina and to develop novel molecules with potential effect on diabetic retinopathy.


Assuntos
Astrócitos/metabolismo , Barreira Hematorretiniana/metabolismo , Células Endoteliais/metabolismo , Glucose/metabolismo , Pericitos/metabolismo , Retina/metabolismo , Antígenos CD/metabolismo , Biomarcadores/metabolismo , Barreira Hematorretiniana/enzimologia , Caderinas/metabolismo , Técnicas de Cocultura , Glucose/farmacologia , Heme Oxigenase-1/metabolismo , Humanos , Técnicas In Vitro , Inflamação/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Modelos Biológicos , NADPH Oxidase 2/genética , NADPH Oxidase 2/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Estresse Oxidativo/genética , Proteínas Serina-Treonina Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo , Quinase Induzida por NF-kappaB
9.
Pharmacol Res ; 141: 384-391, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30648615

RESUMO

The dopamine D3 receptor (D3R), in the nucleus accumbens (NAc), plays an important role in alcohol reward mechanisms. The major neuronal type within the NAc is the GABAergic medium spiny neuron (MSN), whose activity is regulated by dopaminergic inputs. We previously reported that genetic deletion or pharmacological blockade of D3R increases GABAA α6 subunit in the ventral striatum. Here we tested the hypothesis that D3R-dependent changes in GABAA α6 subunit in the NAc affect voluntary alcohol intake, by influencing the inhibitory transmission of MSNs. We performed in vivo and ex vivo experiments in D3R knockout (D3R -/-) mice and wild type littermates (D3R +/+). Ro 15-4513, a high affinity α6-GABAA ligand was used to study α6 activity. At baseline, NAc α6 expression was negligible in D3R+/+, whereas it was robust in D3R-/-; other relevant GABAA subunits were not changed. In situ hybridization and qPCR confirmed α6 subunit mRNA expression especially in the NAc. In the drinking-in-the-dark paradigm, systemic administration of Ro 15-4513 inhibited alcohol intake in D3R+/+, but increased it in D3R-/-; this was confirmed by intra-NAc administration of Ro 15-4513 and furosemide, a selective α6-GABAA antagonist. Whole-cell patch-clamp showed peak amplitudes of miniature inhibitory postsynaptic currents in NAc medium spiny neurons higher in D3R-/- compared to D3R+/+; Ro 15-4513 reduced the peak amplitude in the NAc of D3R-/-, but not in D3R+/+. We conclude that D3R-dependent enhanced expression of α6 GABAA subunit inhibits voluntary alcohol intake by increasing GABA inhibition in the NAc.


Assuntos
Consumo Excessivo de Bebidas Alcoólicas/genética , Neurônios GABAérgicos/patologia , Receptores de Dopamina D3/genética , Receptores de GABA-A/genética , Animais , Consumo Excessivo de Bebidas Alcoólicas/patologia , Neurônios GABAérgicos/metabolismo , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Knockout , Núcleo Accumbens/metabolismo , Núcleo Accumbens/patologia , Subunidades Proteicas/genética , RNA Mensageiro/genética
10.
Pharmacol Res ; 130: 374-384, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29438781

RESUMO

In the last several years a large number of studies have demonstrated the neurobiological and clinical continuum between depression and Alzheimer's disease (AD). Depression is a risk factor for the development of AD, and the presence of depressive symptoms significantly increases the conversion of Mild Cognitive Impairment (MCI) into AD. Common pathophysiological events have been identified in depression and AD, including neuroinflammation with an aberrant Tumor Necrosis Factor-α (TNF-α) signaling, and an impairment of Brain-Derived Neurotrophic Factor (BDNF) and Transforming-Growth-Factor-ß1 (TGF-ß1) signaling. TGF-ß1 is an anti-inflammatory cytokine that exerts neuroprotective effects against amyloid-ß (Aß)-induced neurodegeneration, and it has a key role in memory formation and synaptic plasticity. TGF-ß1 plasma levels are reduced in major depressed patients (MDD), correlate with depression severity, and significantly contribute to treatment resistance in MDD. The deficit of Smad-dependent TGF-ß1 signaling is also an early event in AD pathogenesis, which contributes to inflammaging and cognitive decline in AD. A long-term treatment with antidepressants such as selective-serotonin-reuptake inhibitors (SSRIs) is known to reduce the risk of AD in patients with depression and, SSRIs, such as fluoxetine, increase the release of TGF-ß1 from astrocytes and exert relevant neuroprotective effects in experimental models of AD. We propose the TGF-ß1 signaling pathway as a common pharmacological target in depression and AD, and discuss the potential rescue of TGF-ß1 signaling by antidepressants as a way to prevent the transition from depression to AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Depressão/tratamento farmacológico , Fator de Crescimento Transformador beta1/metabolismo , Doença de Alzheimer/epidemiologia , Doença de Alzheimer/metabolismo , Animais , Disfunção Cognitiva/metabolismo , Depressão/epidemiologia , Depressão/metabolismo , Humanos , Transdução de Sinais
11.
Int J Mol Sci ; 19(4)2018 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-29587404

RESUMO

Following peripheral nerve injury, dysregulations of certain non-coding microRNAs (miRNAs) occur in Schwann cells. Whether these alterations are the result of local inflammation and/or correlate with perturbations in the expression profile of the protective vasoactive intestinal peptide (VIP)/pituitary adenylate cyclase-activating polypeptide (PACAP) system is currently unknown. To address these issues, we aimed at profiling the expression of selected miRNAs in the rat RT4 Schwann cell line. Cells exposed to lipopolysaccharide (LPS), to mimic the local inflammatory milieu, were appraised by real-time qPCR, Western blot and ELISAs. We found that upon LPS treatment, levels of pro-inflammatory cytokines (IL-1ß, -6, -18, -17A, MCP-1 and TNFα) increased in a time-dependent manner. Unexpectedly, the expression levels of VIP and PACAP were also increased. Conversely, levels of VPAC1 and VPAC2 receptors were reduced. Downregulated miRNAs included miR-181b, -145, -27a, -340 and -132 whereas upregulated ones were miR-21, -206, -146a, -34a, -155, -204 and -29a, respectively. Regression analyses revealed that a subset of the identified miRNAs inversely correlated with the expression of VPAC1 and VPAC2 receptors. In conclusion, these findings identified a novel subset of miRNAs that are dysregulated by immune challenge whose activities might elicit a regulatory function on the VIP/PACAP system.


Assuntos
Inflamação/metabolismo , MicroRNAs/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Células de Schwann/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citocinas/análise , Relação Dose-Resposta a Droga , Lipopolissacarídeos/farmacologia , Ratos , Receptores Tipo II de Peptídeo Intestinal Vasoativo/metabolismo , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/metabolismo , Análise de Regressão , Células de Schwann/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos
12.
Int J Mol Sci ; 18(10)2017 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-28973964

RESUMO

Dysregulation of the transforming growth factor-ß1 (TGF-ß1)/selected small mother against decapentaplegic (SMAD) pathway can be implicated in development of age-related macular degeneration (AMD), and the delivery of TGF-ß1 could be beneficial for AMD. We developed a new ophthalmic formulation of TGF-ß1 assessing the ocular pharmacokinetic profile of TGF-ß1 in the rabbit eye. Small unilamellar vesicles (SUV) loaded with TGF-ß1 were complemented with Annexin V and Ca2+, and the vitreous bioavailability of TGF-ß1 was assessed after topical ocular administration by a commercial ELISA kit. We detected high levels of TGF-ß1 (Cmax 114.7 ± 12.40 pg/mL) in the vitreous after 60 min (Tmax) from the topical application of the liposomal suspension. Ocular tolerability was also assessed by a modified Draize's test. The new formulation was well tolerated. In conclusion, we demonstrated that the novel formulation was able to deliver remarkable levels of TGF-ß1 into the back of the eye after topical administration. Indeed, this TGF-ß1 delivery system may be useful in clinical practice to manage ophthalmic conditions such as age-related macular degeneration, skipping invasive intraocular injections.


Assuntos
Olho/metabolismo , Fator de Crescimento Transformador beta1/administração & dosagem , Fator de Crescimento Transformador beta1/farmacocinética , Administração Oftálmica , Animais , Humanos , Lipossomos , Degeneração Macular/tratamento farmacológico , Modelos Moleculares , Soluções Oftálmicas/administração & dosagem , Soluções Oftálmicas/farmacocinética , Coelhos , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/farmacocinética
13.
Pharmacol Res ; 106: 10-20, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26875816

RESUMO

The ectopic re-activation of cell cycle in neurons is an early event in the pathogenesis of Alzheimer's disease (AD), which could lead to synaptic failure and ensuing cognitive deficits before frank neuronal death. Cytostatic drugs that act as cyclin-dependent kinase (CDK) inhibitors have been poorly investigated in animal models of AD. In the present study, we examined the effects of flavopiridol, an inhibitor of CDKs currently used as antineoplastic drug, against cell cycle reactivation and memory loss induced by intracerebroventricular injection of Aß1-42 oligomers in CD1 mice. Cycling neurons, scored as NeuN-positive cells expressing cyclin A, were found both in the frontal cortex and in the hippocampus of Aß-injected mice, paralleling memory deficits. Starting from three days after Aß injection, flavopiridol (0.5, 1 and 3mg/kg) was intraperitoneally injected daily, for eleven days. Here we show that a treatment with flavopiridol (0.5 and 1mg/kg) was able to rescue the loss of memory induced by Aß1-42, and to prevent the occurrence of ectopic cell-cycle events in the mouse frontal cortex and hippocampus. This is the first evidence that a cytostatic drug can prevent cognitive deficits in a non-transgenic animal model of AD.


Assuntos
Peptídeos beta-Amiloides/efeitos adversos , Antineoplásicos/farmacologia , Flavonoides/farmacologia , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Memória/efeitos dos fármacos , Fragmentos de Peptídeos/efeitos adversos , Piperidinas/farmacologia , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Animais , Transtornos Cognitivos/induzido quimicamente , Transtornos Cognitivos/tratamento farmacológico , Transtornos Cognitivos/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Modelos Animais de Doenças , Lobo Frontal/efeitos dos fármacos , Lobo Frontal/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Transtornos da Memória/etiologia , Transtornos da Memória/metabolismo , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo
14.
Pharmacol Res ; 111: 713-720, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27475885

RESUMO

We evaluated whether specifically and directly targeting human antigen R (HuR), a member of embryonic lethal abnormal vision (ELAV) proteins family, may represent a new potential therapeutic strategy to manage diabetic retinopathy. Nanosystems loaded with siRNA silencing HuR expression (lipoplexes), consisting of solid lipid nanoparticles (SLN) and liposomes (SUV) were prepared. Photon correlation spectroscopy analysis, Zeta potential measurement and atomic force microscopy (AFM) studies were carried out to characterize the complexation of siRNA with the lipid nanocarriers. Nanosystems were evaluated by using AFM and scanning electron microscopy. The lipoplexes were injected into the eye of streptozotocin (STZ)-induced diabetic rats. Retinal HuR and VEGF levels were detected by Western blot and ELISA, respectively. Retinal histology was also carried out. The results demonstrated that retinal HuR and VEGF are significantly increased in STZ-rats and are blunted by HuR siRNA treatment. Lipoplexes with a weak positive surface charge and with a 4:1 N/P (cationic lipid nitrogen to siRNA phosphate) ratio exert a better transfection efficiency, significantly dumping retinal HuR and VEGF levels. In conclusion, we demonstrated that siRNA can be efficiently delivered into the rat retina using lipid-based nanocarriers, and some of the lipoplexes loaded with siRNA silencing HuR expression are potential candidates to manage retinal diseases.


Assuntos
Diabetes Mellitus Experimental/terapia , Retinopatia Diabética/prevenção & controle , Proteína Semelhante a ELAV 1/genética , Nanomedicina/métodos , Interferência de RNA , RNA Interferente Pequeno/genética , Terapêutica com RNAi/métodos , Retina/metabolismo , Animais , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Retinopatia Diabética/etiologia , Retinopatia Diabética/genética , Retinopatia Diabética/metabolismo , Proteína Semelhante a ELAV 1/metabolismo , Injeções Intraoculares , Lipídeos/química , Lipossomos , Masculino , Nanopartículas , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/química , RNA Interferente Pequeno/metabolismo , Ratos Sprague-Dawley , Retina/patologia , Propriedades de Superfície , Fator A de Crescimento do Endotélio Vascular/metabolismo
15.
Pharmacol Res ; 87: 151-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24861565

RESUMO

In recent years, several studies have explored the involvement of the deregulation of the hypothalamus-pituitary-adrenal (HPA) axis in the pathophysiology of stress-related disorders. HPA hyper-activation as a consequence of acute/chronic stress has been found to play a major role in the neurobiological changes that are responsible for the onset of such states. Currently available medications for depression, one of the most relevant stress-related disorders, present several limitations, including a time lag for treatment response and low rates of efficacy. N-Arachidonoylserotonin (AA-5-HT), a dual blocker at fatty acid amide hydrolase (FAAH, the enzyme responsible for the inactivation of the endocannabinoid anandamide) and transient receptor potential vanilloid type-1 channel (TRPV1), produces anxiolytic-like effects in mice. The present study was designed to assess the capability of AA-5-HT to reverse the behavioral despair following exposure to stress in rats and the role of the HPA-axis. Behavioral tasks were performed, and corticosterone and endocannabinoid (anandamide and 2-arachidonoylglycerol) levels were measured in selected brain areas critically involved in the pathophysiology of stress-related disorders (medial PFC and hippocampus) under basal and stress conditions, and in response to treatment with AA-5-HT. Our data show that AA-5-HT reverses the rat behavioral despair in the forced swim test under stress conditions, and this effect is associated with the normalization of the HPA-axis deregulation that follows stress application and only in part with elevation of anandamide levels. Blockade of FAAH and TRPV1 may thus represent a novel target to design novel therapeutic strategies for the treatment of stress-related disorders.


Assuntos
Amidoidrolases/antagonistas & inibidores , Ácidos Araquidônicos/farmacologia , Ácidos Araquidônicos/uso terapêutico , Serotonina/análogos & derivados , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo , Canais de Cátion TRPV/antagonistas & inibidores , Amidoidrolases/genética , Amidoidrolases/metabolismo , Animais , Ácidos Araquidônicos/metabolismo , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Corticosterona/sangue , Endocanabinoides/metabolismo , Glicerídeos/metabolismo , Sistema Hipotálamo-Hipofisário , Masculino , Sistema Hipófise-Suprarrenal , Alcamidas Poli-Insaturadas/metabolismo , Ratos , Ratos Wistar , Restrição Física , Serotonina/farmacologia , Serotonina/uso terapêutico , Estresse Psicológico/sangue , Natação , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
16.
Nat Neurosci ; 27(7): 1318-1332, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38769153

RESUMO

Emotion recognition and the resulting responses are important for survival and social functioning. However, how socially derived information is processed for reliable emotion recognition is incompletely understood. Here, we reveal an evolutionarily conserved long-range inhibitory/excitatory brain network mediating these socio-cognitive processes. Anatomical tracing in mice revealed the existence of a subpopulation of somatostatin (SOM) GABAergic neurons projecting from the medial prefrontal cortex (mPFC) to the retrosplenial cortex (RSC). Through optogenetic manipulations and Ca2+ imaging fiber photometry in mice and functional imaging in humans, we demonstrate the specific participation of these long-range SOM projections from the mPFC to the RSC, and an excitatory feedback loop from the RSC to the mPFC, in emotion recognition. Notably, we show that mPFC-to-RSC SOM projections are dysfunctional in mouse models relevant to psychiatric vulnerability and can be targeted to rescue emotion recognition deficits in these mice. Our findings demonstrate a cortico-cortical circuit underlying emotion recognition.


Assuntos
Emoções , Córtex Pré-Frontal , Animais , Emoções/fisiologia , Córtex Pré-Frontal/fisiologia , Camundongos , Masculino , Humanos , Neurônios GABAérgicos/fisiologia , Vias Neurais/fisiologia , Somatostatina/metabolismo , Reconhecimento Psicológico/fisiologia , Camundongos Endogâmicos C57BL , Optogenética , Feminino , Giro do Cíngulo/fisiologia
17.
Front Pharmacol ; 15: 1386224, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38595916

RESUMO

Introduction: Alzheimer's disease (AD) is the most common neurodegenerative disorder affecting the elderly population worldwide. Due to the multifactorial nature of the disease, involving impairment of cholinergic neurotransmission and immune system, previous attempts to find effective treatments have faced challenges. Methods: In such scenario, we attempted to investigate the effects of alpha-glyceryl-phosphoryl-choline (α-GPC), a cholinomimetic molecule, on neuroinflammation and memory outcome in the triple transgenic mouse model of AD (3xTg-AD). Mice were enrolled at 4 months of age, treated orally with α-GPC dissolved in drinking water at a concentration resulting in an average daily dose of 100 mg/kg for 8 months and sacrificed at 12 months of age. Thereafter, inflammatory markers, as well as cognitive parameters, were measured. Results: Chronic α-GPC treatment reduced accumulation of amyloid deposits and led to a substantial re-balance of the inflammatory response of resident innate immune cells, astrocytes and microglia. Specifically, fluorescent immunohistochemistry and Western blot analysis showed that α-GPC contributed to reduction of cortical and hippocampal reactive astrocytes and pro-inflammatory microglia, concurrently increasing the expression of anti-inflammatory molecules. Whereas α-GPC beneficially affect the synaptic marker synaptophysin in the hippocampus. Furthermore, we observed that α-GPC was effective in restoring cognitive dysfunction, as measured by the Novel Object Recognition test, wherein 3xTg-AD mice treated with α-GPC significantly spent more time exploring the novel object compared to 3xTg-AD untreated mice. Discussion: In conclusion, chronic treatment with α-GPC exhibited a significant anti-inflammatory activity and sustained the key function of hippocampal synapses, crucial for the maintenance of a regular cognitive status. In light of our results, we suggest that α-GPC could be exploited as a promising therapeutic approach in early phases of AD.

18.
Int J Neuropsychopharmacol ; 16(4): 813-23, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-22695046

RESUMO

These experiments were undertaken to assess the mechanisms underlying the antidepressant-like effects of the neurokinin-2 (NK(2)) receptor antagonist saredutant (SR48968) in rats tested in the forced swim test (FST), by analysing hippocampal brain-derived neurotrophic factor (BDNF) and plasma corticosterone [as index of hypothalamic-pituitary-adrenal (HPA) axis activity]. Male Wistar rats received three intraperitoneal injections over 24 h of vehicle, saredutant (5 mg/kg), citalopram (15 mg/kg), clomipramine (50 mg/kg). Rats were subjected to restraint stress (4 h) 24 h prior to the FST procedure. This stress procedure increased immobility and decreased swimming behaviour in the FST; furthermore, it lowered hippocampal BDNF protein expression and increased plasma corticosterone levels. Saredutant and clomipramine or citalopram, used here as positive controls, reduced the immobility time in the FST both under basal conditions and after stress exposure. This effect was not attributable to changes in locomotion, because locomotor activity was unchanged when assessed in the open field test. Pretreatment with para-cholorophenylalanine (150 mg/kg, 72 h and 48 h prior to FST) abolished the effect of citalopram and saredutant on immobility time. At neurochemical level, saredutant attenuated activation of HPA axis in stressed animals more than clomipramine or citalopram. The behavioural effects of saredutant support the hypothesis that NK(2) receptor activity is involved in stress-related disorders. These effects of saredutant may be related to normalization of the HPA axis. Moreover, saredutant increases BDNF expression in the hippocampus, confirming the role of NK(2) receptor blockade in BDNF activation following stressor application.


Assuntos
Antidepressivos/uso terapêutico , Benzamidas/uso terapêutico , Hipocampo/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Piperidinas/uso terapêutico , Receptores da Neurocinina-2/antagonistas & inibidores , Estresse Psicológico/prevenção & controle , Animais , Antidepressivos/farmacologia , Benzamidas/farmacologia , Hipocampo/química , Hipocampo/metabolismo , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/metabolismo , Masculino , Atividade Motora/fisiologia , Piperidinas/farmacologia , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/metabolismo , Ratos , Ratos Wistar , Receptores da Neurocinina-2/metabolismo , Estresse Psicológico/metabolismo
19.
Neurochem Res ; 38(3): 564-72, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23242790

RESUMO

Passive avoidance (PA) conditioning is a fear motivated task able to initiate a cascade of altered gene expression within the hippocampus, a structure critical to learning and memory. We have previously shown that neurofibromin (NF1) and amyloid precursor protein (APP), two genes implicated in cognitive function, are differentially expressed in brain of dopamine D3 receptor knock-out mice (D(3)R(-/-)), suggesting that the receptor might have a role in their trascriptional regulation. Here in this study, we hypothesized that during acquisition of PA conditioning the expression of NF1 and APP genes could be influenced by D(3)Rs. To address this issue, we analyzed the expression of NF1 and APP in the hippocampus of both wild-type (WT) and D(3)R(-/-) mice subjected to the single trial step-through PA paradigm. Our finding demonstrated that (1) D(3)R(-/-) mice exhibit increased cognitive performance as compared to WT mice in the step-through PA trial; (2) acquisition of PA increased D(3)R and NF1, but not APP expression in WT mice hippocampus; (3) PA-driven NF1 induction in WT was abrogated in D(3)R(-/-) mice and finally that (4) the heightened basal APP expression observed in naive D(3)R(-/-) mice was totally reversed by acquisition of PA. In conclusion, the present finding show for the first time that both D(3)R and NF1 genes are upregulated following PA conditioning and suggest that hippocampal D(3)Rs might be relevant to NF1 transcriptional regulation in the hippocampus.


Assuntos
Precursor de Proteína beta-Amiloide/biossíntese , Aprendizagem da Esquiva/fisiologia , Neurofibromina 1/biossíntese , Receptores de Dopamina D3/deficiência , Animais , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Knockout
20.
Neurochem Res ; 38(12): 2516-23, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24100927

RESUMO

Dopamine D3 receptors (D3Rs) are implicated in synaptic plasticity and memory processes. Previously we have shown that D3Rs mediate inhibitory effects on learning, since D3R knockout (D 3 (-/-) ) mice display enhanced performance in the passive avoidance task (PA). Formation of new memories is known to require de novo synthesis of proteins related to synaptic function through the activation of signaling pathways including the mitogen-activated protein kinases (MAPKs) and activation of the nuclear transcription factor cAMP response element binding protein (CREB). However, there are no clear indications regarding the specific involvement of D3Rs in the activation of these signaling cascades after acquisition of PA. Therefore, in this study we assessed whether phosphorylation levels of several MAPKs, Akt and CREB were differentially affected by PA in both wild-type (WT) and D 3 (-/-) mice hippocampi. Animals were divided in Naïve, unconditioned stimulus trained, conditioned stimulus trained and conditioned animals. Phosphorylation of extracellular signal-regulated kinase 1/2 (ERK 1/2), c-Jun-N-terminal kinase (JNK) and p38, as well as of Akt and CREB were determined. Acquisition of PA significantly increased pCREB levels both in WT and D 3 (-/-) mice. The extent of PA-driven increase in pCREB levels was significantly higher in mice lacking D3Rs. Similarly, pERK 1/2 was further augmented in trained D 3 (-/-) mice as compared to trained WTs, whereas JNK and p38 phosphorylation was not affected neither by PA nor by genetic background. Finally, Akt activation was observed in D 3 (-/-) mice, but not in response to PA. In conclusion, these data supports the notion that D3Rs might modulate CREB phosphorylation after acquisition of PA, probably via activation of ERK signaling.


Assuntos
Aprendizagem da Esquiva , Condicionamento Operante , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Hipocampo/metabolismo , Receptores de Dopamina D3/fisiologia , Animais , Western Blotting , Hipocampo/enzimologia , Masculino , Camundongos , Camundongos Knockout , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Receptores de Dopamina D3/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA