RESUMO
BACKGROUND: Synthetic amorphous silica nanoparticles (SAS-NPs) are widely employed in pharmaceutics, cosmetics, food and concretes. Workers and the general population are exposed daily via diverse routes of exposure. SAS-NPs are generally recognized as safe (GRAS) by the Food and Drug Administration, but because of their nanoscale size and extensive uses, a better assessment of their immunotoxicity is required. In the presence of immune "danger signals", dendritic cells (DCs) undergo a maturation process resulting in their migration to regional lymph nodes where they activate naive T-cells. We have previously shown that fumed silica pyrogenic SAS-NPs promote the two first steps of the adaptative immune response by triggering DC maturation and T-lymphocyte response, suggesting that SAS-NPs could behave as immune "danger signals". The present work aims to identify the mechanism and the signalling pathways involved in DC phenotype modifications provoked by pyrogenic SAS-NPs. As a pivotal intracellular signalling molecule whose phosphorylation is associated with DC maturation, we hypothesized that Spleen tyrosine kinase (Syk) may play a central role in SAS-NPs-induced DC response. RESULTS: In human monocyte-derived dendritic cells (moDCs) exposed to SAS-NPs, Syk inhibition prevented the induction of CD83 and CD86 marker expression. A significant decrease in T-cell proliferation and IFN-γ, IL-17F and IL-9 production was found in an allogeneic moDC:T-cell co-culture model. These results suggested that the activation of Syk was necessary for optimal co-stimulation of T-cells. Moreover, Syk phosphorylation, observed 30 min after SAS-NP exposure, occurred upstream of the c-Jun N-terminal kinase (JNK) Mitogen-activated protein kinases (MAPK) and was elicited by the Src family of protein tyrosine kinases. Our results also showed for the first time that SAS-NPs provoked aggregation of lipid rafts in moDCs and that MßCD-mediated raft destabilisation altered Syk activation. CONCLUSIONS: We showed that SAS-NPs could act as an immune danger signal in DCs through a Syk-dependent pathway. Our findings revealed an original mechanism whereby the interaction of SAS-NPs with DC membranes promoted aggregation of lipid rafts, leading to a Src kinase-initiated activation loop triggering Syk activation and functional DC maturation.
Assuntos
Nanopartículas , Dióxido de Silício , Humanos , Dióxido de Silício/toxicidade , Dióxido de Silício/metabolismo , Proteínas Tirosina Quinases/metabolismo , Fosforilação , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Nanopartículas/toxicidade , Células Dendríticas , Quinase Syk/metabolismoRESUMO
The development of anti-drug Abs in response to biological products (BP) is a major drawback in the treatment of patients. Factors related to the patient, the treatment, and the product can influence BP immunogenicity. Among these factors, BP aggregates have been suggested to promote immunogenicity by acting as danger signals recognized by dendritic cells (DC) facilitating the establishment of an anti-BP CD4 T cell-dependent adaptive immune response leading to anti-drug Abs production. To date, little is known on the mechanism supporting the effect of aggregates on DCs and consequently on the T cell response. The aim of this work was to identify key signaling pathways involved in BP aggregate DC activation and T cell response. We generated aggregates by submitting infliximab (IFX), an immunogenic anti-TNF-α chimeric Ab, to heat stress. Our results showed that IFX aggregates were able to induce human monocyte-derived DC (moDC) maturation in a concentration-dependent manner. Aggregate-treated moDCs enhanced allogeneic T cell proliferation and IL-5, IL-9, and IL-13 production compared with native Ab-treated moDCs. We then investigated the implication of FcγRIIa and spleen tyrosine kinase (Syk) in DC activation and showed that they were both strongly implicated in moDC maturation induced by IFX aggregates. Indeed, we found that neutralization of FcγRIIa inhibited DC activation, and consequently, Syk inhibition led to a decrease in T cell proliferation and cytokine production in response to IFX aggregates. Taken together, our results bring new insight, to our knowledge, on how protein aggregates could induce DC and T cell activation via the FcγRIIa-Syk signaling pathway.
Assuntos
Células Dendríticas/imunologia , Infliximab/imunologia , Ativação Linfocitária/imunologia , Receptores de IgG/imunologia , Quinase Syk/imunologia , Linfócitos T/imunologia , Proliferação de Células/fisiologia , Células Cultivadas , Humanos , Monócitos/imunologia , Transdução de Sinais/imunologia , Fator de Necrose Tumoral alfa/imunologiaRESUMO
Surface-enhanced Raman spectroscopy (SERS) is a powerful analytical technique capable of increasing the Raman signal of an analyte using specific nanostructures. The close contact between those nanostructures, usually a suspension of nanoparticles, and the molecule of interest produces an important exaltation of the intensity of the Raman signal. Even if the exaltation leads to an improvement of Raman spectroscopy sensitivity, the complexity of the SERS signal and the numbers of parameters to be controlled allow the use of SERS for detection rather than quantification. The aim of this study was to develop a robust discriminative and quantitative analysis in accordance with pharmaceutical standards. In this present work, we develop a discriminative and quantitative analysis based on the previous optimized parameters obtained by the design of experiments fixed for norepinephrine (NOR) and extended to epinephrine (EPI) which are two neurotransmitters with very similar structures. Studying the short evolution of the Raman signal intensity over time coupled with chemometric tools allowed the identification of outliers and their removal from the data set. The discriminant analysis showed an excellent separation of EPI and NOR. The comparative analysis of the data showed the superiority of the multivariate analysis after logarithmic transformation. The quantitative analysis allowed the development of robust quantification models from several gold nanoparticle batches with limits of quantification of 32 µg/mL for NOR and below 20 µg/mL for EPI even though no Raman signal is observable for such concentrations. This study improves SERS analysis over ultrasensitive detection for discrimination and quantification using a handheld Raman spectrometer.
Assuntos
Epinefrina/análise , Ouro/química , Nanopartículas Metálicas/química , Norepinefrina/análise , Análise Espectral Raman/métodosRESUMO
Patients treated with therapeutic biological products (BP) frequently develop anti-drug antibodies (ADA) with potential neutralizing capacities leading to loss of clinical response or serious side effects. BP aggregates have been suggested to promote immunogenicity, thus enhancing ADA production. Dendritic cells (DC) are key effectors in T-cell and B-cell fates, and the subsequent generation of immunogenicity. The objective of this work was to determine if BP aggregates can participate to DC maturation and T-cell activation. We compared aggregates from three different proteins: human growth hormone (hGH), Rituximab, a chimeric anti-CD20 antibody and a serum-purified human IgG1. All three proteins underwent a stir stress, generating comparable populations of aggregated particles. Maturation of human monocyte-derived DC (moDC) upon exposure to native BPs or aggregates was evaluated in vitro. Results showed that hGH aggregates induced an increased expression of moDC co-stimulation markers, and augmented levels of IL-6, IL-8, IL-12p40, CCL2, CCL3, CCL4 and CXCL10. Both antibodies aggregates were also able to modify DC phenotype, but cytokine and chemokine productions were seen only with IL-6, IL-8, IL-12p40 and CXCL10. Aggregates-treated moDC enhanced allogenic T-cell proliferation and cytokines production, suggesting Th1 polarization with hGH, and mixed T-cell responses with antibodies aggregates. These results showed that BP aggregates provoked DC maturation, thus driving adaptive T-cell responses and polarization.
Assuntos
Polaridade Celular/efeitos dos fármacos , Células Dendríticas/citologia , Hormônio do Crescimento/farmacologia , Imunoglobulina G/farmacologia , Agregados Proteicos , Linfócitos T/citologia , Proliferação de Células/efeitos dos fármacos , Quimiocinas/metabolismo , Células Dendríticas/efeitos dos fármacos , Humanos , Mediadores da Inflamação/metabolismo , Fenótipo , Linfócitos T/efeitos dos fármacosRESUMO
A series of ß-cyclodextrin (ßCD) amphiphilic derivatives with varying degrees of substitution were prepared by acylating ßCDs on their secondary face using thermolysin to catalyze the transesterification. After dissolution in acetone, the ßCD-Cn derivatives (n = 8, 10, 12, 14) were nanoprecipitated in water, where they self-organized into structured particles that were characterized using cryo-transmission electron microscopy (cryo-TEM) images and small-angle X-ray scattering (SAXS) data. Two types of morphologies and ultrastructures were observed depending on the total degree of substitution (TDS) of the parent derivative. The molecules with TDS < 5 formed nanospheres with a multilamellar organization, whereas those with TDS > 5 self-assembled into barrel-like (n = 8, 10, 12) or more tortuous (n = 14) particles with a columnar inverse hexagonal structure. In particular, faceted ßCD-C14 particles (TDS = 7) appeared to be composed of several domains with different orientations that were separated by sharp interfaces. Ultrastructural models were proposed on the basis of cryo-TEM images and the analysis of the contrast distribution in different projections of the lattice. Complementary compression isotherm experiments carried out at the air-water interface also suggested that differences in the molecular conformation of the series of derivatives existed depending on whether TDS was lower or higher than 5.
RESUMO
Signal amplification by reversible exchange (SABRE) is a promising method to increase the sensitivity of nuclear magnetic resonance (NMR) experiments. However, SABRE-enhanced (1)Hâ NMR signals are short lived, and SABRE is often used to record 1D NMR spectra only. When the sample of interest is a complex mixture, this results in severe overlaps for (1)H spectra. In addition, the use of a co-substrate, whose signals may obscure the (1) H spectra, is currently the most efficient way to lower the detection limit of SABRE experiments. Here, we describe an approach to obtain clean, SABRE-hyperpolarized 2D (1)Hâ NMR spectra of mixtures of small molecules at sub-millimolar concentrations in a single scan. The method relies on the use of para-hydrogen together with a deuterated co-substrate for hyperpolarization and ultrafast 2D NMR for acquisition. It is applicable to all substrates that can be polarized with SABRE.
Assuntos
Espectroscopia de Ressonância Magnética , 2,2'-Dipiridil/química , Complexos de Coordenação , Hidrogênio/químicaRESUMO
Cutaneous leishmaniasis, caused by Leishmania parasites, requires treatments with fewer side effects than those currently available. The development of a topical solution based on amphotericin B (AmB) was pursued. The considerable interest in deep eutectic solvents (DESs) and their remarkable advantages inspired the search for a suitable hydrophobic excipient. Various mixtures based on commonly used hydrogen bond donors (HBDs) and acceptors (HBAs) for DES preparations were explored. Initial physical and in-vitro screenings showed the potential of quaternary phosphonium salt-based mixtures. Through thermal analysis, it was determined that most of these mixtures did not exhibit eutectic behavior. X-ray scattering studies revealed a sponge-like nanoscale structure. The most promising formulation, based on a combination of trihexyl(tetradecyl)phosphonium chloride and 1-oleoyl-rac-glycerol, showed no deleterious effects through histological evaluation. AmB was fully solubilized at concentrations between 0.5 and 0.8 mg·mL-1, depending on the formulation. The monomeric state of AmB was observed by circular dichroism. In-vitro irritation tests demonstrated acceptable viability for AmB-based formulations up to 0.5 mg·mL-1. Additionally, an ex-vivo penetration study on pig ear skin revealed no transcutaneous passage, confirming AmB retention in healthy, unaffected skin.
Assuntos
Anfotericina B , Antiprotozoários , Interações Hidrofóbicas e Hidrofílicas , Leishmaniose Cutânea , Anfotericina B/administração & dosagem , Anfotericina B/química , Leishmaniose Cutânea/tratamento farmacológico , Animais , Antiprotozoários/química , Antiprotozoários/administração & dosagem , Antiprotozoários/farmacologia , Antiprotozoários/farmacocinética , Suínos , Pele/metabolismo , Pele/efeitos dos fármacos , Excipientes/química , Solubilidade , Absorção Cutânea , Solventes/químicaRESUMO
Although amphiphilic cyclodextrin derivatives (ACDs) serve as valuable building blocks for nanomedicine formulations, their widespread production still encounters various challenges, limiting large-scale manufacturing. This work focuses on a robust alternative pathway using mineral base catalysis to transesterify ß-cyclodextrin with long-chain vinyl esters, yielding ACD with modular and controlled hydrocarbon chain grafting. ACDs with a wide range of degrees of substitution (DS) were reliably synthesized, as indicated by extensive physicochemical characterization, including MALDI-TOF mass spectrometry. The influence of various factors, including the type of catalyst and the length of the hydrocarbon moiety of the vinyl ester, was studied in detail. ACDs were assessed for their ability to form colloidal suspensions by nanoprecipitation, with or without PEGylated phospholipid. Small-angle X-ray scattering and cryo-electron microscopy revealed the formation of nanoparticles with distinct ultrastructures depending on the DS: an onion-like structure for low and very high DS, and reversed hexagonal organization for DS between 4.5 and 6.1. We confirmed the furtivity of the PEGylated versions of the nanoparticles through complement activation experiments and that they were well tolerated in-vivo on a zebrafish larvae model after intravenous injection. Furthermore, a biodistribution experiment showed that the nanoparticles left the bloodstream within 10 h after injection and were phagocytosed by macrophages.
Assuntos
Ciclodextrinas , Nanopartículas , Animais , Ciclodextrinas/química , Microscopia Crioeletrônica/métodos , Distribuição Tecidual , Peixe-Zebra , Nanopartículas/química , Ésteres , Hidrocarbonetos , PolietilenoglicóisRESUMO
Small bilayer lipid aggregates such as bicelles provide useful isotropic or anisotropic membrane mimetics for structural studies of biological membranes. We have shown previously by deuterium NMR that a wedge-shaped amphiphilic derivative of trimethyl ßcyclodextrin anchored in deuterated DMPC-d27 bilayers through a lauryl acyl chain (TrimßMLC) is able to induce magnetic orientation and fragmentation of the multilamellar membranes. The fragmentation process fully detailed in the present paper is observed with 20% cyclodextrin derivative below 37 °C, where pure TrimßMLC self-assembles in water into large giant micellar structures. After deconvolution of a broad composite 2H NMR isotropic component, we propose a model where the DMPC membranes are progressively disrupted by TrimßMLC into small and large micellar aggregates depending whether they are extracted from the outer or inner layers of the liposomes. Below the fluid-to-gel transition of pure DMPC-d27 membranes (Tc = 21.5 °C), the micellar aggregates vanish progressively until complete extinction at 13 °C, with a probable release of pure TrimßMLC micelles leaving lipid bilayers in the gel phase doped with only a small amount of the cyclodextrin derivative. Bilayer fragmentation between Tc and 13 °C was also observed with 10% and 5% of TrimßMLC, with NMR spectra suggesting possible interactions of micellar aggregates with fluid-like lipids of the Pß' ripple phase. No membrane orientation and fragmentation was detected with unsaturated POPC membranes, which are able to accommodate the insertion of TrimßMLC without important perturbation. The data are discussed in relation to the formation of possible DMPC bicellar aggregates such as those known to occur after insertion of dihexanoylphosphatidylcholine (DHPC). These bicelles are in particular associated with similar deuterium NMR spectra exhibiting identical composite isotropic components which were never characterized before.
Assuntos
Ciclodextrinas , Ciclodextrinas/química , Dimiristoilfosfatidilcolina/química , Deutério , Bicamadas Lipídicas/química , Membrana Celular/químicaRESUMO
Glioblastoma is one of the most common and aggressive forms of brain tumor, a rare disease for which there is a great need for innovative therapies. ONC201, a new drug substance, has been used in a compassionate treatment program where the choice of dosage form and regimen have yet to be justified. The prior knowledge needed to anticipate ONC201 stability problems has recently been partially addressed, by (i) showing that ONC201 is sensitive to light and oxidation and (ii) identifying the molecular structures of the main degradation products formed. The aim of the work presented here was to improve our understanding of the degradation pathways of ONC201 using data from ab initio calculations and experimental work to supplement the structural information we already published. The C-H bonds located αto the amine of the tetrahydropyridine group and those located alpha to the imine function of the dihydroimidazole group exhibit the lowest bond dissociation energies (BDEs) within the ONC201 molecule. Moreover, these values drop well below 90 kcal.mol-1 when ONC201 is in an excited state (S1; T1). The structures of the photoproducts we had previously identified are consistent with these data, showing that they would have resulted from radical processes following the abstraction of alpha hydrogens. Concerning ONC201's sensitivity to oxidation, the structures of the oxidation products matched the critical points revealed through mapped electrostatic potential (MEP) and average local ionization energy (ALIE). The data obtained from ab initio calculations and experimental work showed that the reactivity of ONC201 to light and oxidation conditions is highly dependent on pH. While an acidic environment (pH < 6) contributes to making ONC201 quantitatively more stable in solution in the face of oxidation and photo-oxidation, it nevertheless seems that certain chemical groups in the molecule are more exposed to nucleophilic attacks, which explains the variation observed in the profile of degradation products formed in the presence of certain antioxidants tested. This information is crucial to better understand the stability results in the presence of antioxidant agents and to determine the right conditions for them to act.
RESUMO
Surface Enhanced Raman Scattering (SERS) spectroscopy is a rapid and innovative analysis technique involving metallic nanoparticles (NPs). The interaction between NPs and norepinephrine gives an exaltation of the Raman signal under certain experimental conditions. The control of the signal exaltation, crucial for sensitive analyses, remains one of the main limitations of this technique. The aim of this work is to optimize the exaltation conditions for an optimal SERS signal at two concentrations of norepinephrine (NOR) and spherical gold NPs in suspension. This first work will fix the optimal experimental conditions essential for the development of robust discriminant and quantitative analysis of catecholamine. Two complete 3-factors 3-levels experiment designs were performed at 20 µg.mL-1 and 100 µg.mL-1 norepinephrine concentrations, each experiment being repeated 3 times. The optimization factors were the process of synthesis (variation of the quantity of gold and citrate used for the three synthesis SA, SB and SC) and HCl (0.3 M, 0.5 M, 0.7 M) as well as the volume ratio of NPs and norepinephrine (0.5, 2, 3.5) for SERS acquisition. Spectral acquisitions were performed with a handheld Raman spectrometer with an excitation source at 785 nm. For each sample, 31 acquisitions were realized during 3 s every 8 s. The optimization parameter was the intensity of the characteristic band of norepinephrine at 1280 cm-1. A total of 5,042 spectra were acquired and the pre-treatment selected for all spectra was asymmetric least square combined to a smoothing of Savistsky Golay (ALS - SG). The optimal contact time between norepinephrine and NPs depends on the experimental conditions and was determined for each experiment according to the mean intensity between the three replicates. After interpretation of the experimental designs, the optimal conditions retained were the quantity of gold corresponding to SA and the HCl concentration 0.7 M for the two concentrations of norepinephrine. Indeed, the optimal volume ratio depend on the NOR concentration.
Assuntos
Ouro , Nanopartículas Metálicas , Análise Espectral Raman , SuspensõesRESUMO
Electromagnetic radiation-triggered therapeutic effect has attracted a great interest over the last 50 years. However, translation to clinical applications of photoactive molecular systems developed to date is dramatically limited, mainly because their activation requires excitation by low-energy photons from the ultraviolet to near infra-red range, preventing any activation deeper than few millimetres under the skin. Herein we conceive a strategy for photosensitive-system activation potentially adapted to biological tissues without any restriction in depth. High-energy stimuli, such as those employed for radiotherapy, are used to carry energy while molecular activation is provided by local energy conversion. This concept is applied to azobenzene, one of the most established photoswitches, to build a radioswitch. The radiation-responsive molecular system developed is used to trigger cytotoxic effect on cancer cells upon gamma-ray irradiation. This breakthrough activation concept is expected to expand the scope of applications of photosensitive systems and paves the way towards the development of original therapeutic approaches.
Assuntos
Fótons , Radiação Ionizante , Fótons/uso terapêuticoRESUMO
Cochleate systems formed from phospholipids have very useful properties as drug delivery systems with sustained release capabilities, which are able to improve bioavailability and efficacy, reduce toxicity and increase the shelf-life of encapsulated molecules. These nanometric or micrometric structures are usually obtained after interaction of negatively charged liposomes with a positively charged bridging agent. Many different methods are now available to prepare cochleates and there are also numerous techniques that can be used to characterize them, some of which can be easily applied while others require more sophisticated equipment or analysis. The present review describes the important features of this drug delivery system; including their structural properties and potential applications, as well as a brief account of methods for their preparation and an extensive description of the techniques used for their characterization. This information could guide formulators in their choice of methods of characterization that would be best suited to their needs in terms of time, precision and technological difficulty.
Assuntos
Lipossomos , Fosfolipídeos , Disponibilidade Biológica , Sistemas de Liberação de MedicamentosRESUMO
Innate immune cells such as dendritic cells (DCs) sense and engulf nanomaterials potentially leading to an adverse immune response. Indeed, as described for combustion-derived particles, nanomaterials could be sensed as danger signals, enabling DCs to undergo a maturation process, migrate to regional lymph nodes and activate naive T lymphocytes. Synthetic amorphous silica nanoparticles (SAS-NPs) are widely used as food additives, cosmetics, and construction materials. This work aimed to evaluate in vitro the effects of manufactured SAS-NPs, produced by thermal or wet routes, on human DCs functions and T-cell activation. Human monocyte-derived DCs (moDCs) were exposed for 16 h to 3 endotoxin-free test materials: fumed silica NPs from Sigma-Aldrich (no. S5505) or the JRC Nanomaterial Repository (NM-202) and colloidal LudoxTMA NPs. Cell viability, phenotypical changes, cytokines production, internalization, and allogeneic CD4+ T-cells proliferation were evaluated. Our results showed that all SAS-NPs significantly upregulated the surface expression of CD86 and CD83 activation markers. Secretions of pro-inflammatory cytokines (CXCL-8 and CXCL-12) were significantly enhanced in a dose-dependent manner in the moDCs culture supernatants by all SAS-NPs tested. In an allogeneic coculture, fumed silica-activated moDCs significantly increased T-lymphocyte proliferation at all T-cell: DC ratios compared with unloaded moDCs. Moreover, analysis of coculture supernatants regarding the production of T-cell-derived cytokines showed a significant increase of IL-9 and IL-17A and F, as well as an upregulation of IL-5, consistent with the pro-inflammatory phenotype of treated moDCs. Taken together, these results suggest that SAS-NPs could induce functional moDCs maturation and play a role in the immunization process against environmental antigens.
Assuntos
Ativação Linfocitária , Nanopartículas , Linfócitos T CD4-Positivos , Diferenciação Celular , Técnicas de Cocultura , Citocinas/metabolismo , Células Dendríticas/metabolismo , Humanos , Monócitos , Nanopartículas/toxicidade , Dióxido de Silício/toxicidadeRESUMO
In this study, we proved that the stabilisation of Pickering emulsions by polymer nanoparticles (NPs) heavily depends on polymer characteristics. We prepared NPs with four poly(lactide-co-glycolide) polymers (PLGA), of different molar masses (14,000 and 32,000 g/mol) and end groups (acid or alkylester). NPs were either bare (without stabilising polymer) or covered by polyvinyl alcohol (PVA). Pickering emulsions were prepared by mixing NP aqueous suspensions with various amounts of oil (Miglyol 812 N). First, NP wettability was directly affected by PLGA end group: ester-ending PLGA led to more hydrophobic NPs, compared to acid-ending PLGA. This effect of the end group could be slightly enhanced with smaller molar mass. Thus, bare PLGA NPs stabilised different types of emulsions (W/O/W and W/O), following Finkle's rule. However, the effect of PLGA characteristics was masked when NPs were covered by PVA, as PVA drove the stabilisation of O/W emulsions. Secondly, PLGA molar mass and end group also influenced its glass transition temperature (Tg), with spectacular consequences on emulsion formation. Indeed, the shortest ester-ending PLGA exhibited a Tg close to room temperature, when measured in the emulsion. This Tg, easily exceeded during emulsification process, led to a soft solid emulsion, stabilised by a network of NP debris.
RESUMO
A new diphenylphosphane based on a beta-cyclodextrin skeleton that exhibits a dual solubility in water and in organic solvent was synthesised. Interestingly, a solvent-dependent conformation change was evidenced by NMR spectroscopy studies; the self-inclusion of a phenyl group of the phosphane moiety into cyclodextrin cavity observed in water disappeared in organic solvents due to a change in conformation. Hydrogenation or hydroformylation reactions performed in water and in organic solvents showed that this ligand was able to stabilise catalytically active rhodium species in solution. In the case of the hydroformylation reaction, it was demonstrated that regioselectivity was influenced by the solvent-dependent conformation of the ligand.
Assuntos
Fosfinas/química , beta-Ciclodextrinas/química , Catálise , Conformação Molecular , Solventes/químicaRESUMO
As the nanotechnology market expands and the prevalence of allergic diseases keeps increasing, the knowledge gap on the capacity of nanomaterials to cause or exacerbate allergic outcomes needs more than ever to be filled. Engineered nanoparticles (NP) could have an adjuvant effect on the immune system as previously demonstrated for particulate air pollution. This effect would be the consequence of the recognition of NP as immune danger signals by dendritic cells (DCs). The aim of this work was to set up an in vitro method to functionally assess this effect using amorphous silica NP as a prototype. Most studies in this field are restricted to the evaluation of DCs maturation, generally of murine origin, through a limited phenotypic analysis. As it is essential to also consider the functional consequences of NP-induced DC altered phenotype on T-cells biology, we developed an allogeneic co-culture model of human monocyte-derived DCs (MoDCs) and CD4+ T-cells. We demonstrated that DC: T-cell ratios were a critical parameter to correctly measure the influence of NP danger signals through allogeneic co-culture. Moreover, to better visualize the effect of NP while minimizing the basal proliferation inherent to the model, we recommend testing three different ratios, preferably after five days of co-culture.
RESUMO
Antineoplastic agents are, for most of them, highly toxic drugs prepared at hospital following individualized prescription. To protect patients and healthcare workers, it is important to develop analytical tools able to identify and quantify such drugs on a wide concentration range. In this context, surface enhanced Raman spectroscopy (SERS) has been tested as a specific and sensitive technique. Despite the standardization of the nanoparticle synthesis, a polydispersity of nanoparticles in the suspension and a lack of reproducibility persist. This study focuses on the development of a new mathematical approach to deal with this nanoparticle polydispersity and its consequences on SERS signal variability through the feasibility of 5-fluorouracil (5FU) quantification using silver nanoparticles (AgNPs) and a handled Raman spectrophotometer. Variability has been maximized by synthetizing six different batches of AgNPs for an average size of 24.9 nm determined by transmission electron microscopy, with residual standard deviation of 17.0%. Regarding low performances of the standard multivariate data processing, an alternative approach based on the nearest neighbors were developed to quantify 5FU. By this approach, the predictive performance of the 5FU concentration was significantly improved. The mean absolute relative error (MARE) decreased from 16.8% with the traditional approach based on PLS regression to 6.30% with the nearest neighbors approach (p-value < 0.001). This study highlights the importance of developing mathematics adapted to SERS analysis which could be a step to overcome the spectral variability in SERS and thus participate in the development of this technique as an analytical tool in quality control to quantify molecules with good performances, particularly in the pharmaceutical field.
Assuntos
Antineoplásicos/análise , Fluoruracila/análise , Nanopartículas Metálicas/química , Prata/química , Humanos , Análise dos Mínimos Quadrados , Dinâmica não Linear , Tamanho da Partícula , Análise Espectral Raman , Propriedades de SuperfícieRESUMO
The methyl ester of 8-oxo-8H-indeno[2',1':7,8]naphtho[1,2-b]thiophene-2-carboxylic acid (1) and its corresponding PEGylated ester were synthesised and fully characterised. X-ray diffraction studies on (1) confirmed the helical structure of the receptor and that it is self-assembled into layers by π-π interactions. An in-depth study by DFT calculations and MS experiments (ESI-MS, MS/MS, IMRPD and ESI-IMS-MS) was carried out between (1) and the physiological cation K+. The formation of supramolecular complexes between (1) and K+ with different stoichiometries was demonstrated and the cation K+ preferentially interacts with the oxygen atoms of the carbonyl bond of the ketone and ester groups and the sulphur atom of the heterocycle. The ability of the two synthesized aromatic architectures to transport ions across a model lipid membrane has been studied by electrophysiology experiments. The formation of pores was observed, even at nanomolar concentrations. Since the PEGylated molecule showed more regular pore definitions than the hydrophobic molecule, the introduction of a polar hydrophilic chain made it possible to control the orientation of the aromatic architectures within the membrane.
RESUMO
The antipsychotic drug chlorpromazine (CPZ) has potential for the treatment of acute myeloid leukemia, if central nervous system side-effects resulting from its passage through the blood-brain barrier can be prevented. A robust drug delivery system for repurposed CPZ would be drug-in-cyclodextrin-in-liposome that would redirect the drug away from the brain while avoiding premature release in the circulation. As a first step, CPZ complexation with cyclodextrin (CD) has been studied. The stoichiometry, binding constant, enthalpy, and entropy of complex formation between CPZ and a panel of CDs was investigated by isothermal titration calorimetry (ITC). All the tested CDs were able to include CPZ, in the form of 1:1, 1:2 or a mixture of 1:1 and 1:2 complexes. In particular, a substituted γ-CD, sugammadex (the octasodium salt of octakis(6-deoxy-6-S-(2-carboxyethyl)-6-thio)cyclomaltooctaose), formed exclusively 1:2 complexes with an extremely high association constant of 6.37 × 109 M-2. Complexes were further characterized by heat capacity changes, one- and two-dimensional (ROESY) nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics simulations. Finally, protection of CPZ against photodegradation by CDs was assessed. This was accelerated rather than reduced by complexation with CD. Altogether these results provide a molecular basis for the use of CD in delayed release formulations for CPZ.