Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(27): e2300833120, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37364119

RESUMO

Disclination lines play a key role in many physical processes, from the fracture of materials to the formation of the early universe. Achieving versatile control over disclinations is key to developing novel electro-optical devices, programmable origami, directed colloidal assembly, and controlling active matter. Here, we introduce a theoretical framework to tailor three-dimensional disclination architecture in nematic liquid crystals experimentally. We produce quantitative predictions for the connectivity and shape of disclination lines found in nematics confined between two thinly spaced glass substrates with strong patterned planar anchoring. By drawing an analogy between nematic liquid crystals and magnetostatics, we find that i) disclination lines connect defects with the same topological charge on opposite surfaces and ii) disclination lines are attracted to regions of the highest twist. Using polarized light to pattern the in-plane alignment of liquid crystal molecules, we test these predictions experimentally and identify critical parameters that tune the disclination lines' curvature. We verify our predictions with computer simulations and find nondimensional parameters enabling us to match experiments and simulations at different length scales. Our work provides a powerful method to understand and practically control defect lines in nematic liquid crystals.

2.
Proc Natl Acad Sci U S A ; 120(18): e2215517120, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37094149

RESUMO

We probe the microstructural yielding dynamics of a concentrated colloidal system by performing creep/recovery tests with simultaneous collection of coherent scattering data via X-ray Photon Correlation Spectroscopy (XPCS). This combination of rheology and scattering allows for time-resolved observations of the microstructural dynamics as yielding occurs, which can be linked back to the applied rheological deformation to form structure-property relations. Under sufficiently small applied creep stresses, examination of the correlation in the flow direction reveals that the scattering response recorrelates with its predeformed state, indicating nearly complete microstructural recovery, and the dynamics of the system under these conditions slows considerably. Conversely, larger creep stresses increase the speed of the dynamics under both applied creep and recovery. The data show a strong connection between the microstructural dynamics and the acquisition of unrecoverable strain. By comparing this relationship to that predicted from homogeneous, affine shearing, we find that the yielding transition in concentrated colloidal systems is highly heterogeneous on the microstructural level.

3.
Proc Natl Acad Sci U S A ; 119(30): e2201566119, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35858447

RESUMO

Arrested soft materials such as gels and glasses exhibit a slow stress relaxation with a broad distribution of relaxation times in response to linear mechanical perturbations. Although this macroscopic stress relaxation is an essential feature in the application of arrested systems as structural materials, consumer products, foods, and biological materials, the microscopic origins of this relaxation remain poorly understood. Here, we elucidate the microscopic dynamics underlying the stress relaxation of such arrested soft materials under both quiescent and mechanically perturbed conditions through X-ray photon correlation spectroscopy. By studying the dynamics of a model associative gel system that undergoes dynamical arrest in the absence of aging effects, we show that the mean stress relaxation time measured from linear rheometry is directly correlated to the quiescent superdiffusive dynamics of the microscopic clusters, which are governed by a buildup of internal stresses during arrest. We also show that perturbing the system via small mechanical deformations can result in large intermittent fluctuations in the form of avalanches, which give rise to a broad non-Gaussian spectrum of relaxation modes at short times that is observed in stress relaxation measurements. These findings suggest that the linear viscoelastic stress relaxation in arrested soft materials may be governed by nonlinear phenomena involving an interplay of internal stress relaxations and perturbation-induced intermittent avalanches.

4.
J Chem Phys ; 158(2): 024906, 2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36641382

RESUMO

We report a combined rheology, x-ray photon correlation spectroscopy, and modeling study of gel formation and aging in suspensions of nanocolloidal spheres with volume fractions of 0.20 and 0.43 and with a short-range attraction whose strength is tuned by changing temperature. Following a quench from high temperature, where the colloids are essentially hard spheres, to a temperature below the gel point, the suspensions form gels that undergo aging characterized by a steadily increasing elastic shear modulus and slowing, increasingly constrained microscopic dynamics. The aging proceeds at a faster rate for stronger attraction strength. When the attraction strength is suddenly lowered during aging, the gel properties evolve non-monotonically in a manner resembling the Kovacs effect in glasses, in which the modulus decreases and the microscopic dynamics become less constrained for a period before more conventional aging resumes. Eventually, the properties of the gel following the decrease in attraction strength converge to those of a gel that has undergone aging at the lower attraction strength throughout. The time scale of this convergence increases as a power law with the age at which the attraction strength is decreased and decreases exponentially with the magnitude of the change in attraction. A model for gel aging in which particles attach and detach from the gel at rates that depend on their contact number reproduces these trends and reveals that the non-monotonic behavior results from the dispersion in the rates that the populations of particles with different contact number adjust to the new attraction strength.


Assuntos
Coloides , Temperatura Alta , Géis/química , Coloides/química , Suspensões , Temperatura
5.
Soft Matter ; 17(35): 8195-8210, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34525167

RESUMO

We present an experimental study combining particle tracking, active microrheology, and differential dynamic microscopy (DDM) to investigate the dynamics and rheology of an oil-water interface during biofilm formation by the bacteria Pseudomonas Aeruginosa PA14. The interface transitions from an active fluid dominated by the swimming motion of adsorbed bacteria at early age to an active viscoelastic system at late ages when the biofilm is established. The microrheology measurements using microscale magnetic rods indicate that the biofilm behaves as a viscoelastic solid at late age. The bacteria motility at the interface during the biofilm formation, which is characterized in the DDM measurements, evolves from diffusive motion at early age to constrained, quasi-localized motion at later age. Similarly, the mobility of passively moving colloidal spheres at the interface decreases significantly with increasing interface age and shows a dependence on sphere size after biofilm formation that is orders-of-magnitude larger than that expected in a homogeneous system in equilibrium. We attribute this anomalous size dependence to either length-scale-dependent rheology of the biofilm or widely differing effects of the bacteria activity on the motion of spheres of different sizes.


Assuntos
Biofilmes , Água , Bactérias , Pseudomonas aeruginosa , Reologia
6.
Soft Matter ; 17(10): 2973-2984, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33595572

RESUMO

During processing, proteins are easily self-assembled into different aggregates, such as nanoparticles and fibrils. Protein aggregates exhibit a strong interfacial activity due to their morphologies and functional groups on the surface. Their interfacial structure and rheological properties at the oil-water interface have a significant effect on the stability and fat digestion of emulsions in food. In this study, ß-lactoglobulin (ß-lg) aggregates including ß-lg nanoparticles (ß-lg NP) and ß-lg fibrils (ß-lg F) were prepared in solution by controlling the heating temperature and pH, and their surface properties including the electric potential, hydrophobicity, and density of free thiol groups were characterized. The adsorption kinetics, interfacial rheology, and displacement by bile salts (BSs) of native ß-lg and its aggregates at the oil (decane)/water interfaces were studied using particle tracking microrheology and dilatational rheology. From the movement of tracer particles at the interface, ß-lg NP and ß-lg F were found to adsorb faster than native ß-lg, and they were found to form interfacial films with a marginally higher elasticity. During the process of protein adsorption, the films of ß-lg and its aggregates are not uniform. In the process of protein displacement, ß-lg NP has the strongest ability while native ß-lg has the weakest ability to resist BS substitution, which is consistent with the results from in vitro digestion experiments. The present study reveals the microrheological behaviour of protein aggregates at the oil-water interface and demonstrates that ß-lg thermal aggregates exhibit an excellent emulsification ability and can be used to control fat digestion. The study also illustrates the applicability of microrheological methods to the study of interfacial rheology and its complementarity with dilatational rheological methods.


Assuntos
Lactoglobulinas , Óleos , Adsorção , Reologia , Propriedades de Superfície , Água
7.
Soft Matter ; 16(40): 9331-9338, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-32935705

RESUMO

The topological properties of many materials are central to their behavior. In intrinsically out-of-equilibrium active materials, the dynamics of topological defects can be particularly important. In this paper, local manipulation of the order, dynamics, and topological properties of microtubule-based active nematic films is demonstrated in a joint experimental and simulation study. Hydrodynamic stresses created by magnetically actuated rotation of disk-shaped colloids in proximity to the films compete with internal stresses in the active nematic, influencing the local motion of +1/2 charge topological defects that are intrinsic to the nematic order in the spontaneously turbulent active films. Sufficiently large applied stresses drive the formation of +1 charge topological vortices through the merger of two +1/2 defects. The directed motion of the defects is accompanied by ordering of the vorticity and velocity of the active flows within the film that is qualitatively unlike the response of passive viscous films. Many features of the film's response to the stress are captured by lattice Boltzmann simulations, providing insight into the anomalous viscoelastic nature of the active nematic. The topological vortex formation is accompanied by a rheological instability in the film that leads to significant increase in the flow velocities. Comparison of the velocity profile in vicinity of the vortex with fluid-dynamics calculations provides an estimate of the film viscosity.

8.
J Chem Phys ; 151(10): 104902, 2019 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-31521097

RESUMO

A combined X-ray photon correlation spectroscopy and rheology study is carried out to capture the evolution of structure, fast particle-scale dynamics, and moduli (elastic and loss) at early times of gel formation near the fluid-gel boundary of a suspension of nanoparticles. The system is comprised of moderately concentrated suspensions of octadecyl silica in decalin (ϕ = 0.2) undergoing thermoreversible gelation. Near the gel boundary, the rate of gel formation is very sensitive to changes in attraction strength. However, we find that at different attraction strengths, the system goes through identical intermediate states of microscopic and macroscopic behavior, even though the absolute time needed to form a gel varies by orders of magnitude. We identify a single dimensionless time parameter, tw/tg, where tw is the wait time following the quench and tg is the rheologically determined gel time, that captures the similarity in gel formation at a range of attraction strengths. Following a temperature quench below the gel boundary, the system is initially fluidlike and forms diffusive clusters (∼8.5 times the particle diameter). After a lag-time, tL, clusters aggregate to form a network like structure which is characterized by the onset of mechanical rigidity and a rapid growth in microscopic relaxation times. At tg, the Baxter parameter obtained from adhesive hard sphere fits of the structure factor attains a constant value corresponding to the theoretical percolation boundary, thus demonstrating that gelation is percolation driven.

9.
Soft Matter ; 14(27): 5643-5653, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29943791

RESUMO

The displacements of ensembles of colloids at the interface between oil and suspensions of the bacterium Pseudomonas aeruginosa PA14ΔpelA indicate enhanced colloid mobilities and apparently diffusive motion driven by interactions with the bacteria. However, inspection of individual trajectories of ∼500 particles reveals prolonged, directed displacements inconsistent with purely hydrodynamic interactions between swimming bacteria and colloids. Analysis of the properties of colloid paths indicates trajectories can be sorted into four distinct categories, including diffusive, persistent, curly, and mixed trajectory types. Non-diffusive trajectories are the norm, comprising 2/3 of the observed trajectories. Imaging of colloids in the interface reveals anisotropic assemblies formed by colloids decorated with one or more adhered bacteria that drive the colloids along these paths. The trajectories and enhanced transport result from individual colloids being moved as cargo by these adhered bacteria. The implications of these structures and open questions for interfacial transport are discussed and related to the active colloid literature.


Assuntos
Movimento , Pseudomonas aeruginosa/fisiologia , Aderência Bacteriana , Difusão , Modelos Biológicos
10.
Soft Matter ; 14(5): 861-862, 2018 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-29350228

RESUMO

Correction for 'Films of bacteria at interfaces: three stages of behaviour' by Liana Vaccari et al., Soft Matter, 2015, 11, 6062-6074.

11.
J Chem Phys ; 148(4): 044902, 2018 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-29390849

RESUMO

Colloidal suspensions transform between fluid and disordered solid states as parameters such as the colloid volume fraction and the strength and nature of the colloidal interactions are varied. Seemingly subtle changes in the characteristics of the colloids can markedly alter the mechanical rigidity and flow behavior of these soft composite materials. This sensitivity creates both a scientific challenge and an opportunity for designing suspensions for specific applications. In this paper, we report a novel mechanism of gel formation in mixtures of weakly attractive nanocolloids with modest size ratio. Employing a combination of x-ray photon correlation spectroscopy, rheometry, and molecular dynamics simulations, we find that gels are stable at remarkably weaker attraction in mixtures with size ratio near two than in the corresponding monodisperse suspensions. In contrast with depletion-driven gelation at larger size ratio, gel formation in the mixtures is triggered by microphase demixing of the species into dense regions of immobile smaller colloids surrounded by clusters of mobile larger colloids that is not predicted by mean-field thermodynamic considerations. These results point to a new route for tailoring nanostructured colloidal solids through judicious combination of interparticle interaction and size distribution.

12.
Phys Rev Lett ; 119(17): 178006, 2017 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-29219444

RESUMO

We have examined the formation and dissolution of gels composed of intermediate volume-fraction nanoparticles with temperature-dependent short-range attractions using small-angle x-ray scattering, x-ray photon correlation spectroscopy, and rheology to obtain nanoscale and macroscale sensitivity to structure and dynamics. Gel formation after temperature quenches to the vicinity of the rheologically determined gel temperature, T_{gel}, was characterized via the slowdown of dynamics and changes in microstructure observed in the intensity autocorrelation functions and structure factor, respectively, as a function of quench depth (ΔT=T_{quench}-T_{gel}), wave vector, and formation time t_{f}. We find the wave-vector-dependent dynamics, microstructure, and rheology at a particular ΔT and t_{f} map to those at other ΔTs and t_{f}s via an effective scaling temperature, T_{s}. A single T_{s} applies to a broad range of ΔT and t_{f} but does depend on the particle size. The rate of formation implied by the scaling is a far stronger function of ΔT than expected from the attraction strength between colloids. We interpret this strong temperature dependence in terms of cooperative bonding required to form stable gels via energetically favored, local structures.

13.
Soft Matter ; 14(1): 83-91, 2017 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-29099121

RESUMO

We have investigated the gravity-driven transport of spherical colloids suspended in the nematic liquid crystal 4-cyano-4'-pentylbiphenyl (5CB) within microfluidic arrays of cylindrical obstacles arranged in a square lattice. Homeotropic anchoring at the surfaces of the obstacles created periodic director-field patterns that strongly influenced the motion of the colloids, whose surfaces had planar anchoring. When the gravitational force was oriented parallel to a principal axis of the lattice, the particles moved along channels between columns of obstacles and displayed pronounced modulations in their velocity. Quantitative analysis indicates that this modulation resulted from a combination of a spatially varying effective drag viscosity and elastic interactions engendered by the periodic director field. The interactions differed qualitatively from a sum of pair-wise interactions between the colloids and isolated obstacles, reflecting the distinct nematic environment created by confinement within the array. As the angle α between the gravitational force and principal axis of the lattice was varied, the velocity did not follow the force but instead locked into a discrete set of directions commensurate with the lattice. The transitions between these directions occurred at values of α that were different from those observed when the spheres were in an isotropic liquid, indicating the ability of the liquid crystal forces to tune the lateral displacement behavior in such devices.

14.
Soft Matter ; 12(46): 9321-9329, 2016 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-27805235

RESUMO

We report a study connecting the nanoscale and macroscale structure and dynamics of Acacia mearnsii gum as probed by small-angle X-ray scattering (SAXS), X-ray photon correlation spectroscopy (XPCS) and rheology. Acacia gum, in general, is a complex polysaccharide used extensively in industry. Over the analyzed concentration range (15 to 30 wt%) the A. mearnsii gum is found to have a gel-like linear rheology and to exhibit shear thinning flow behavior under steady shear. The gum solutions exhibited a steadily increasing elastic modulus with increasing time after they were prepared and also the emergence of shear thickening events within the shear thinning behavior, characteristic of associative polymers. XPCS measurements using gold nanoparticles as tracers were used to explore the microscopic dynamics within the biopolymer gels and revealed a two-step relaxation process with a partial decay at inaccessibly short times, suggesting caged motion of the nanoparticles, followed by a slow decay at later delay times. Non-diffusive motion evidenced by a compressed exponential line shape and an inverse relationship between relaxation time and wave vector characterizes the slow dynamics of A. mearnsii gum gels. Surprisingly, we have determined that the nanometer-scale mean square displacement of the nanoparticles showed a close relationship to the values predicted from the macroscopic elastic properties of the material, obtained through the rheology experiments. Our results demonstrate the potential applicability of the XPCS technique in the natural polymers field to connect their macroscale properties with their nanoscale structure and dynamics.

15.
Soft Matter ; 11(21): 4189-96, 2015 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-25875803

RESUMO

We have investigated the mobility of discoidal colloidal particles sedimenting within cholesteric finger textures formed by mixtures of the nematic liquid crystal 4-cyano-4'-pentylbiphenyl (5CB) and the chiral dopant 4-(2-methylbutyl)-4'-cyanobiphenyl (CB15) with cholesteric pitch p between 24 and 114 µm. The nickel disks, with radius 17 µm and thickness 300 nm, displayed varied transport behavior that depended on the size of the pitch and the orientation of the gravitational force with respect to the cholesteric axis. In textures with small pitch (p < 40 µm), the disks moved perpendicular to the axis irrespective of the orientation of gravity as a result of an elastic retarding force that prevented motion along the axis. In textures with larger pitch, the disks similarly moved perpendicular to the axis when the angle between the force and axis was large. When the angle was small, the disks displayed stick-slip motion caused by periodic yielding of the finger texture. A model considering viscous drag on the particles and the elastic energy cost of deforming the finger texture describes the stick-slip motion accurately. The effective drag viscosities obtained from the disk motion are anomalously large compared with those of pure nematic 5CB indicating a large contribution to the dissipation from the motion of disclinations in the texture in the vicinity of the translating disks.

16.
Soft Matter ; 11(30): 6062-74, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26135879

RESUMO

We report an investigation of the formation of films by bacteria at an oil-water interface using a combination of particle tracking and pendant drop elastometry. The films display a remarkably varied series of dynamical and mechanical properties as they evolve over the course of minutes to hours following the creation of an initially pristine interface. At the earliest stage of formation, which we interrogate using dispersions of colloidal probes, the interface is populated with motile bacteria. Interactions with the bacteria dominate the colloidal motion, and the interface displays canonical features of active matter in a quasi-two-dimensional context. This active stage gives way to a viscoelastic transition, presumably driven by the accumulation at the interface of polysaccharides and surfactants produced by the bacteria, which instill the interface with the hallmarks of soft glassy rheology that we characterize with microrheology. Eventually, the viscoelastic film becomes fully elastic with the capability to support wrinkling upon compression, and we investigate this final stage with the pendant drop measurements. We characterize quantitatively the dynamic and mechanical properties of the films during each of these three stages - active, viscoelastic, and elastic - and comment on their possible significance for the interfacial bacterial colony. This work also brings to the forefront the important role that interfacial mechanics may play in bacterial suspensions with free surfaces.


Assuntos
Bactérias/química , Biofilmes/crescimento & desenvolvimento , Óleos/química , Água/química , Reologia , Propriedades de Superfície
17.
Langmuir ; 30(43): 12888-96, 2014 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-25310625

RESUMO

We present a coarse-grained model to describe the adsorption and deformation of proteins at an air-water interface. The interface is introduced empirically in the form of a localized field that couples to a hydropathy scale of amino acids. We consider three kinds of proteins: protein G, egg-white lysozyme, and hydrophobin. We characterize the nature of the deformation and the orientation of the proteins induced by their proximity to and association with the interface. We also study protein diffusion in the layer formed at the interface and show that the diffusion slows with increasing concentration in a manner similar to that for a colloidal suspension approaching the glass transition.


Assuntos
Ar , Proteínas Imobilizadas/química , Modelos Moleculares , Água/química , Animais , Conformação Proteica
18.
Soft Matter ; 10(36): 7051-60, 2014 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-24969505

RESUMO

We report experiments studying the mechanical evolution of layers of the protein lysozyme adsorbing at the air-water interface using passive and active microrheology techniques to investigate the linear and nonlinear rheological response, respectively. Following formation of a new interface, the linear shear rheology, which we interrogate through the Brownian motion of spherical colloids at the interface, becomes viscoelastic with a complex modulus that has approximately power-law frequency dependence. The power-law exponent characterizing this frequency dependence decreases steadily with increasing layer age. Meanwhile, the nonlinear microrheology, probed via the rotational motion of magnetic nanowires at the interface, reveals a layer response characteristic of a shear-thinning power-law fluid with a flow index that decreases with age. We discuss two possible frameworks for understanding this mechanical evolution: gelation and the formation of a soft glass phase.


Assuntos
Coloides/química , Muramidase/química , Reologia/métodos , Água/química , Ar , Animais , Galinhas , Elasticidade , Géis , Vidro , Modelos Lineares , Magnetismo , Nanofios , Resistência ao Cisalhamento , Propriedades de Superfície , Viscosidade
19.
Adv Mater ; 36(23): e2310083, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38301718

RESUMO

Liquid crystals offer a dynamic platform for developing advanced photonics and soft actuation systems due to their unique and facile tunability and reconfigurability. Achieving precise spatial patterning of the liquid crystal alignment is critical to developing electro-optical devices, programmable origami, directed colloidal assembly, and controlling active matter. Here, a simple method is demonstrated to achieve continuous 3D control of the directions of liquid crystal mesogens using a two-step photo-exposure process. In the first step, polarized light sets the orientation in the plane of confining substrates; the second step uses unpolarized light of a prescribed dose to set the out-of-plane orientation. The method enables smoothly varying orientational patterns with sub-micrometer precision. As a demonstration, the setup is used to create gradient-index lenses with parabolic refractive index profiles that remain stable without external electric fields. The lenses' focal length and sensitivity to light polarization are characterized through experimental and numerical methods. The findings pave the way for developing next-generation photonic devices and actuated materials, with potential applications in molecular self-assembly, re-configurable optics, and responsive matter.

20.
Langmuir ; 29(7): 2104-7, 2013 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-23379634

RESUMO

The motion of silica spheres with homeotropic anchoring sedimenting within nematic liquid crystal 4-cyano-4'-pentylbiphenyl (5CB) has been studied at low Ericksen number. The magnitude of the spheres' velocity depends on the angle θ between the far-field nematic director and the gravitational force, indicating an anisotropic Stokes drag. When the director is oriented at an oblique angle to the gravitational force, the velocity also acquires a component normal to the force, demonstrating the existence of a lift force generated by the fluid. The magnitude and direction of the velocity as functions of θ quantitatively obey theoretically predicted forms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA