Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 25(3): 1856-1866, 2017 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-29519038

RESUMO

The propagation of decelerating Airy pulses in non-instantaneous cubic medium is investigated both theoretically and numerically. In a Debye model, at variance with the case of accelerating Airy and Gaussian pulses, a decelerating Airy pulse evolves into a single soliton for weak and general non-instantaneous response. Airy pulses can hence be used to control soliton generation by temporal shaping. The effect is critically dependent on the response time, and could be used as a way to measure the Debye type response function. For highly non-instantaneous response, we theoretically find a decelerating Airy pulse is still transformed into Airy wave packet with deceleration. The theoretical predictions are confirmed by numerical simulations.

2.
Opt Express ; 24(13): 14406-18, 2016 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-27410594

RESUMO

We have investigated the propagation dynamics of super-Gaussian optical beams in fractional Schrödinger equation. We have identified the difference between the propagation dynamics of super-Gaussian beams and that of Gaussian beams. We show that, the linear propagation dynamics of the super-Gaussian beams with order m > 1 undergo an initial compression phase before they split into two sub-beams. The sub-beams with saddle shape separate each other and their interval increases linearly with propagation distance. In the nonlinear regime, the super-Gaussian beams evolve to become a single soliton, breathing soliton or soliton pair depending on the order of super-Gaussian beams, nonlinearity, as well as the Lévy index. In two dimensions, the linear evolution of super-Gaussian beams is similar to that for one dimension case, but the initial compression of the input super-Gaussian beams and the diffraction of the splitting beams are much stronger than that for one dimension case. While the nonlinear propagation of the super-Gaussian beams becomes much more unstable compared with that for the case of one dimension. Our results show the nonlinear effects can be tuned by varying the Lévy index in the fractional Schrödinger equation for a fixed input power.

3.
Opt Express ; 16(10): 7169-74, 2008 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-18545420

RESUMO

We report on the observation of central wavelength dynamics in an erbium-doped fiber ring laser by using the nonlinear polarization rotating technique. The evolution of central wavelength with the laser operation state was observed experimentally. Numerical simulations confirmed the experimental observation and further demonstrated that the dynamics of wavelength evolution is due to the combined effects of fiber birefringence, fiber nonlinearity, and cavity filter.


Assuntos
Érbio/química , Lasers , Microscopia Confocal/métodos , Óptica e Fotônica , Cristalização , Elétrons , Desenho de Equipamento , Luz , Nanopartículas , Nanotecnologia/métodos , Fótons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA