Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
FASEB J ; 33(4): 4836-4850, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30601695

RESUMO

Oxidative stress-induced vascular endothelial cell (VEC) injury is a major mechanism in the initiation and development of atherosclerosis. Lunasin, a soybean-derived 43-aa peptide, has been previously shown to possess potent antioxidant and anti-inflammatory activities other than its established anticancer activities. This study investigated the effects of lunasin on protecting VECs from oxidative damage and inhibiting atherosclerotic plaque progression in apolipoprotein E-deficient (ApoE-/-) mice and explored its underlying mechanism. Biochemical and histologic analyses were performed by using EA.hy926 human VECs and a high-fat diet (HFD) ApoE-/- mouse atherosclerosis model. Our data indicated that lunasin attenuated H2O2-induced, mitochondria-dependent endothelial apoptosis via down-regulating Bax and up-regulating Bcl-2, inhibiting the mitochondrial depolarization, and reducing the release of cytochrome c, as well as decreasing the activation of caspase-9 and caspase-3 in vitro and in vivo. Mechanic studies showed that lunasin significantly up-regulated heme oxygenase-1 via the PI3K/Akt/nuclear factor erythroid 2-related factor 2/antioxidant response element pathway, and reduced H2O2-induced ROS production in VECs, thereby attenuating oxidant-induced endothelial injury and inhibiting atherosclerotic plaque progression in ApoE-/- mice. In conclusion, our in vitro and in vivo data suggest that lunasin protects VECs from oxidative damage by enhancing heme oxygenase-1 expression via activation of the PI3K/Akt/nuclear factor erythroid 2-related factor 2/antioxidant response element pathway and inhibiting mitochondria-dependent apoptosis, thereby effectively attenuating atherosclerosis in HFD-fed ApoE-/- mice. Lunasin may act as a potential therapeutic agent for the prevention and treatment of atherosclerosis.-Gu, L., Ye, P., Li, H., Wang, Y., Xu, Y., Tian, Q., Lei, G., Zhao, C., Gao, Z., Zhao, W., Tan, S. Lunasin attenuates oxidant-induced endothelial injury and inhibits atherosclerotic plaque progression in ApoE-/- mice by up-regulating heme oxygenase-1 via PI3K/Akt/Nrf2/ARE pathway.


Assuntos
Apolipoproteínas E/metabolismo , Heme Oxigenase-1/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas de Plantas/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Apolipoproteínas E/genética , Apoptose/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Oxidativo/efeitos dos fármacos
2.
Molecules ; 24(22)2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31731717

RESUMO

Statins are the most popular therapeutic drugs to lower plasma low density lipoprotein cholesterol (LDL-C) synthesis by competitively inhibiting hydroxyl-3-methyl-glutaryl-CoA (HMG-CoA) reductase and up-regulating the hepatic low density lipoprotein receptor (LDLR). However, the concomitant up-regulation of proprotein convertase subtilisin/kexin type 9 (PCSK9) by statin attenuates its cholesterol lowering efficacy. Lunasin, a soybean derived 43-amino acid polypeptide, has been previously shown to functionally enhance LDL uptake via down-regulating PCSK9 and up-regulating LDLR in hepatocytes and mice. Herein, we investigated the LDL-C lowering efficacy of simvastatin combined with lunasin. In HepG2 cells, after co-treatment with 1 µM simvastatin and 5 µM lunasin for 24 h, the up-regulation of PCSK9 by simvastatin was effectively counteracted by lunasin via down-regulating hepatocyte nuclear factor 1α (HNF-1α), and the functional LDL uptake was additively enhanced. Additionally, after combined therapy with simvastatin and lunasin for four weeks, ApoE-/- mice had significantly lower PCSK9 and higher LDLR levels in hepatic tissues and remarkably reduced plasma concentrations of total cholesterol (TC) and LDL-C, as compared to each monotherapy. Conclusively, lunasin significantly improved the LDL-C lowering efficacy of simvastatin by counteracting simvastatin induced elevation of PCSK9 in hepatocytes and ApoE-/- mice. Simvastatin combined with lunasin could be a novel regimen for hypercholesterolemia treatment.


Assuntos
LDL-Colesterol/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Hepatócitos/enzimologia , Pró-Proteína Convertase 9/biossíntese , Sinvastatina/farmacologia , Proteínas de Soja/farmacologia , Animais , LDL-Colesterol/genética , Hepatócitos/patologia , Hipercolesterolemia/tratamento farmacológico , Hipercolesterolemia/enzimologia , Hipercolesterolemia/metabolismo , Camundongos , Camundongos Knockout para ApoE , Pró-Proteína Convertase 9/genética
3.
Int J Mol Sci ; 18(10)2017 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-28953230

RESUMO

Agonistic antibodies, which bind specifically to death receptor 5 (DR5), can trigger apoptosis in tumor cells through the extrinsic pathway. In this present study, we describe the use of a phage display to isolate a novel fully human agonistic single chain fragment variable (scFv) antibody, which targets DR5. After five rounds of panning a large (1.2 × 108 clones) phage display library on DR5, a total of over 4000 scFv clones were screened by the phage ELISA. After screening for agonism in a cell-viability assay in vitro, a novel DR5-specific scFv antibody TR2-3 was isolated, which inhibited COLO205 and MDA-MB-231 tumor cell growth without any cross-linking agents. The activity of TR2-3 in inducing apoptosis in cancer cells was evaluated by using an Annexin V-PE apoptosis detection kit in combination with flow cytometry and the Hoechst 33342 and propidium iodide double staining analysis. In addition, the activation of caspase-dependent apoptosis was evaluated by Western blot assays. The results indicated that TR2-3 induced robust apoptosis of the COLO205 and MDA-MB-231 cells in a dose-dependent and time-dependent manner, while it remarkably upregulated the cleavage of caspase-3 and caspase-8. Furthermore, TR2-3 suppressed the tumor growth significantly in the xenograft model. Taken together, these data suggest that TR2-3 exhibited potent antitumor activity both in vitro and in vivo. This work provides a novel human antibody, which might be a promising candidate for cancer therapy by targeting DR5.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Neoplasias/metabolismo , Neoplasias/patologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/agonistas , Anticorpos de Cadeia Única/farmacologia , Sequência de Aminoácidos , Animais , Especificidade de Anticorpos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regiões Determinantes de Complementaridade/química , Regiões Determinantes de Complementaridade/genética , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Neoplasias/tratamento farmacológico , Biblioteca de Peptídeos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/química , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
4.
EBioMedicine ; 65: 103250, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33647772

RESUMO

BACKGROUND: Proprotein convertase subtilisin/kexin type 9 (PCSK9) regulates serum LDL cholesterol (LDL-C) levels by facilitating the degradation of the LDL receptor (LDLR) and is an attractive therapeutic target for hypercholesterolemia intervention. Herein, we generated a novel fully human antibody with favourable druggability by utilizing phage display-based strategy. METHODS: A potent single-chain variable fragment (scFv) named AP2M21 was obtained by screening a fully human scFv phage display library with hPCSK9, and performing two in vitro affinity maturation processes including CDR-targeted tailored mutagenesis and cross-cloning. Thereafter, it was transformed to a full-length Fc-silenced anti-PCSK9 antibody FAP2M21 by fusing to a modified human IgG1 Fc fragment with L234A/L235A/N297G mutations and C-terminal lysine deletion, thus eliminating its immune effector functions and mitigating mAb heterogeneity. FINDINGS: Our data showed that the generated full-length anti-PCSK9 antibody FAP2M21 binds to hPCSK9 with a KD as low as 1.42 nM, and a dramatically slow dissociation rate (koff, 4.68 × 10-6 s-1), which could be attributed to its lower binding energy (-47.51 kcal/mol) than its parent counterpart FAP2 (-30.39 kcal/mol). We verified that FAP2M21 potently inhibited PCSK9-induced reduction of LDL-C uptake in HepG2 cells, with an EC50 of 43.56 nM. Further, in hPCSK9 overexpressed C57BL/6 mice, a single tail i.v. injection of FAP2M21 at 1, 3 and 10 mg/kg, dose-dependently up-regulated hepatic LDLR levels, and concomitantly reduced serum LDL-C by 3.3% (P = 0.658, unpaired Student's t-test), 30.2% (P = 0.002, Mann-Whitney U-test) and 37.2% (P = 0.002, Mann-Whitney U-test), respectively. INTERPRETATION: FAP2M21 with potent inhibitory effect on PCSK9 may serve as a promising therapeutic agent for treating hypercholesterolemia and associated cardiovascular diseases.


Assuntos
Anticorpos/imunologia , Peptídeos/metabolismo , Pró-Proteína Convertase 9/metabolismo , Animais , Anticorpos/uso terapêutico , Reações Antígeno-Anticorpo , LDL-Colesterol/sangue , Células Hep G2 , Humanos , Hipercolesterolemia/tratamento farmacológico , Hipercolesterolemia/patologia , Cinética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutagênese , Biblioteca de Peptídeos , Peptídeos/genética , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/imunologia , Ligação Proteica , Receptores de LDL/metabolismo , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/metabolismo , Regulação para Cima/efeitos dos fármacos
5.
Biomed Pharmacother ; 98: 271-279, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29272788

RESUMO

OBJECTIVES: To investigate the antitumor activity of a novel agonistic single chain fragment variable (scFv) antibody TR2-3 targeting death receptor 5 (DR5) combined with cisplatin in vitro and in vivo. METHODS: The in vitro cytotoxic effects of TR2-3 and cisplatin, alone or in combination on human cancer cell lines COLO205 and MDA-MB-231 were evaluated using the MTT assay. The apoptosis in cancer cells was evaluated by an Annexin V-PE apoptosis detection kit and flow cytometry. The mRNA and protein levels of DR5 were analyzed by real-time PCR and Western blot, respectively. Additionally, the in vivo antitumor activity of TR2-3 combined with cisplatin was evaluated in a xenograft model. RESULTS: The combination treatment with TR2-3 and cisplatin for 24 h on COLO205 and MDA-MB-231 cells showed significant cytotoxicity effects by MTT assay, compared with the alone treatment. Consistent with cell viability results, the cisplatin enhanced the apoptosis-inducing effects of TR2-3 in the COLO205 cells and MDA-MB-231 cells by flow cytometry. In addition, treatment with cisplatin alone for 24 h resulted in significantly up-regulating the mRNA and protein levels of DR5 in both COLO205 and MDA-MB-231 cell lines by q-PCR and Western blot assay. Moreover, the cytotoxic effects of TR2-3 can be blocked by adding the soluble DR5, and the blocking rate can be greatly reduced by co-treatment with cisplatin. These results indicated that cisplatin sensitized COLO205 and MDA-MB-231 cancer cells to TR2-3-mediated apoptosis by up-regulation of DR5 expression. Furthermore, combination therapy with TR2-3 and cisplatin enhanced tumor growth inhibition compared to treatment with TR2-3 or cisplatin alone in mice bearing COLO205 xenograft tumors. CONCLUSIONS: Our findings suggest that cisplatin enhanced the antitumor activity of TR2-3 in COLO205 and MDA-MB-231 cancer cells through up-regulation of DR5 expression. The TR2-3 combined with cisplatin may be a promising treatment for cancer therapy.


Assuntos
Antineoplásicos/administração & dosagem , Cisplatino/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/biossíntese , Anticorpos de Cadeia Única/administração & dosagem , Animais , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
6.
Oncotarget ; 8(46): 80826-80840, 2017 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-29113347

RESUMO

Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a serine protease which regulates serum low-density lipoprotein cholesterol (LDL-C) levels by promoting the degradation of the hepatic low-density lipoprotein receptor (LDLR), and has become an attractive therapeutic target for cholesterol lowering intervention. Lunasin, a 43-amino acid polypeptide initially isolated from soybean, has been previously proven to possess cholesterol lowering activity. Here we identified the down-regulation of PCSK9 expression by lunasin as one new mechanism that increased cell-surface LDLR level and enhanced LDL uptake in vitro and in vivo. Treatment of HepG2 cells with lunasin inhibited the expression of PCSK9 at mRNA and protein levels in a dose-and-time dependent manner via down-regulating hepatocyte nuclear factor-1α (HNF-1α), thereby contributing to increasing LDLR level and functionally enhancing LDL uptake. ApoE-/- mice receiving lunasin administration by intraperitoneal injection at doses of 0.125∼0.5 µmol/kg·day for 4 weeks had significantly lower PCSK9 and higher LDLR levels in hepatic tissue, as well as remarkably reduced total-cholesterol (T-CHO) and LDL-C in blood as compared to mice in vehicle control group. Furthermore, we identified that LDLR expression was up-regulated by lunasin via PI3K/Akt-mediated activation of SREBP-2 in HepG2 cells. Taken together, our findings suggest that lunasin inhibits PCSK9 expression by down-regulating HNF-1α and enhances LDLR expression via PI3K/Akt-mediated activation of SREBP-2 pathway, thereby functionally enhances LDL uptake in HepG2 cells and in ApoE-/- mice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA