Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(23): e2309568, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38461520

RESUMO

Wounds in harsh environments can face long-term inflammation and persistent infection, which can slow healing. Wound spray is a product that can be rapidly applied to large and irregularly dynamic wounds, and can quickly form a protective film in situ to inhibit external environmental infection. In this study, a biodegradable A and B combined multi-functional spray hydrogel is developed with methacrylate-modified chitosan (CSMA1st) and ferulic acid (FA) as type A raw materials and oxidized Bletilla striata polysaccharide (OBSP) as type B raw materials. The precursor CSMA1st-FA/OBSP (CSOB-FA1st) hydrogel is formed by the self-cross-linking of dynamic Schiff base bonds, the CSMA-FA/OBSP (CSOB-FA) hydrogel is formed quickly after UV-vis light, so that the hydrogel fits with the wound. Rapid spraying and curing provide sufficient flexibility and rapidity for wounds and the hydrogel has good injectability, adhesive, and mechanical strength. In rats and miniature pigs, the A and B combined spray hydrogel can shrink wounds and promote healing of infected wounds, and promote the enrichment of fibrocyte populations. Therefore, the multifunctional spray hydrogel combined with A and B can protect irregular dynamic wounds, prevent wound infection and secondary injury, and be used for safe and effective wound treatment, which has a good prospect for development.


Assuntos
Quitosana , Hidrogéis , Cicatrização , Cicatrização/efeitos dos fármacos , Animais , Hidrogéis/química , Quitosana/química , Ratos , Suínos , Reagentes de Ligações Cruzadas/química , Ratos Sprague-Dawley , Porco Miniatura , Ácidos Cumáricos/química , Ácidos Cumáricos/farmacologia , Polissacarídeos/química , Polissacarídeos/farmacologia
2.
Regen Biomater ; 11: rbae086, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39165881

RESUMO

The skin stratum corneum (SC) barrier function will interfere with the absorption of topical treatment and reduce the drug's therapeutic effect on alopecia. Microneedles (MNs) can penetrate the skin barrier and deliver drugs to the dermis. Furthermore, MNs can mechanically stimulate the skin, which promotes hair growth. Thus, we designed a green and dissolvable composite microneedle made of hyaluronic acid (HA) and Bletilla striata polysaccharide (BSP) to encapsulate cholesterol-free ginsenoside Rg3 liposomes (Rg3-LPs) to avoid cholesterol metabolism-producing testosterone to inhibit hair regeneration and minimize the effect of the SC barrier on liposomes absorption. HA and BSP can enhance the mechanical strength of Rg3-MNs to ensure the transport of liposomes to the hair follicle (HF) region while causing minimal skin irritation and guaranteeing cell compatibility. In addition, HA increased hair density and was more conducive to hair regeneration. In telogen effluvium (TE) and testosterone-induced androgenetic alopecia (AGA) animals, Rg3-MNs achieved comparable efficacy to minoxidil with low-frequency treatment and the quality of regenerated hair was higher. Furthermore, quantitative characterization and transcriptome sequencing results showed that Rg3-MNs promoted hair regeneration by promoting the expression of Wnt3a and Wnt10b genes, activating the Wnt/ß-catenin pathway. Therefore, Rg3-MNs present broad prospects in the treatment of alopecia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA