Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Oncol ; 12: 935672, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36338763

RESUMO

Background: Cuproptosis is a novel form of programmed cell death termed as Cu-dependent cytotoxicity. However, the roles of cuproptosis-associated genes (CAGs) in lung adenocarcinoma (LUAD) have not been explored comprehensively. Methods: We obtained CAGs and utilized consensus molecular clustering by "non-negative matrix factorization (NMF)" to stratify LUAD patients in TCGA (N = 511), GSE13213 (N = 117), and GSE31210 (N = 226) cohorts. The ssGSEA and CIBERSORT algorithms were used to evaluate the relative infiltration levels of immune cell types in tumor microenvironment (TME). The risk score based on CAGs was calculated to predict patients' survival outcomes. Results: We identified three cuproptosis-associated clusters with different clinicopathological characteristics. We found that the cuproptosis-associated cluster with the worst survival rates exhibited a high enrichment of activated CD4/8+ T cells. In addition, we found that the cuproptosis-associated risk score could be used for patients' prognosis prediction and provide new insights in immunotherapy of LUAD patients. Eventually, we constructed a nomogram-integrated cuproptosis-associated risk score with clinicopathological factors to predict overall survival in LUAD patients, with 1-, 3-, and 5-year area under curves (AUCs) being 0.771, 0.754, and 0.722, respectively, all of which were higher than those of the TNM stage. Conclusions: In this study, we uncovered the biological function of CAGs in the TME and its correlations with clinicopathological parameters and patients' prognosis in LUAD. These findings could provide new angles for immunotherapy of LUAD patients.

2.
3 Biotech ; 9(7): 264, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31192089

RESUMO

Pretreatment of lignocellulosic biomass with ionic liquids (ILs) for the large-scale biorefinery remains challenging due to its high price. This study focused on the utilization of inorganic salts as adjuvants for ionic liquid-water pretreatment to improve the tolerance to water and the reusability of the ILs. After the pretreatment of rice straw by the mixture of 40% 1-ethyl-3-methylimidazolium chloride ([C2mim]Cl) + 53% water + 7% K2CO3 at 110 °C for 1 h, the residues became highly susceptible to enzymatic hydrolysis; 93.70% of lignin was removed, and 92.07% sugar yield was achieved. [C2mim]Cl-K2CO3 aqueous biphasic system was formed at room temperature when K2CO3 concentration increased to more than 30%, and the [C2mim]Cl recovery of 94.32% was achieved. The results indicate that the addition of inorganic salts to IL aqueous solutions can significantly reduce the cost of IL pretreatment, while maintaining an efficient enzymatic hydrolysis of lignocellulosic biomass.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA