Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 17(44): e2101989, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34569721

RESUMO

Design of interfaces with thermodynamic and kinetic specificity is of great importance for hydrogen storage from both an applied and fundamental perspective. Here, in order to destabilize the metal hydride and protect the dehydrogenated products from oxidizing, a unique core-shell structure of porous Mg(BH4 )2 -based framework with a thin layer (no more than 5 nm) of MgCl2 additives on the surface, has been proposed and synthesized via a wet-chemical method. The local structure and electronic state of the present complex system are systematically investigated to understand the correlation between the distribution of additives and dehydrogenation property of Mg(BH4 )2 . A significant improvement is achieved for hydrogen desorption with chlorides: initial hydrogen release from MgCl2 decorated γ-phase Mg(BH4 )2 particles commences at 100 °C and reaches a maximum of 9.4 wt% at 385 °C. Besides the decreased decomposition temperature, an activation barrier of about 76.4 kJ mol-1 lower than that of Mg(BH4 )2 without MgCl2 is obtained. Moreover, MgCl2 decoration can also prevent the whole decomposed system (both Mg- and B- elements) from oxidizing, which is a necessary condition to reversibility.


Assuntos
Hidrogênio , Magnésio , Boroidretos , Porosidade , Termodinâmica
2.
Inorg Chem ; 59(20): 15295-15301, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33000622

RESUMO

We report the heterolysis of molecular hydrogen under ambient conditions by the crystalline frustrated Lewis pair (FLP) 1-{2-[bis(pentafluorophenyl)boryl]phenyl}-2,2,6,6-tetramethylpiperidine (KCAT). The gas-solid reaction provides an approach to prepare the solvent-free, polycrystalline ion pair KCATH2 through a single crystal to single crystal transformation. The crystal lattice of KCATH2 increases in size relative to the parent KCAT by approximately 2%. Microscopy was used to follow the transformation of the highly colored red/orange KCAT to the colorless KCATH2 over a period of 2 h at 300 K under a flow of H2 gas. There is no evidence of crystal decrepitation during hydrogen uptake. Inelastic neutron scattering employed over a temperature range from 4-200 K did not provide evidence for the formation of polarized H2 in a precursor complex within the crystal at low temperatures and high pressures. However, at 300 K, the INS spectrum of KCAT transformed to the INS spectrum of KCATH2. Calculations suggest that the driving force is more favorable in the solid state compared to the solution or gas phase, but the addition of H2 into the KCAT crystal is unfavorable. Ab Initio methods were used to calculate the INS spectra of KCAT, KCATH2, and a possible precursor complex of H2 in the pocket between the B and N of crystalline KCAT. Ex-situ NMR showed that the transformation from KCAT to KCATH2 is quantitative and our results suggest that the hydrogen heterolysis process occurs via H2 diffusion into the FLP crystal with a rate-limiting movement of H2 from inactive positions to reactive sites.

3.
Chemphyschem ; 20(10): 1301-1304, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-30843647

RESUMO

Modification of magnesium diboride, MgB2 , by mechanical milling with THF, MgH2 , and/or Mg results in a lowering of the conditions required for its direct, bulk hydrogenation to magnesium borohydride, Mg(BH4 )2 , by 300 bar and 100 °C. Following mechanical milling with MgH2 or THF and Mg, MgB2 can be hydrogenated to Mg(BH4 )2 at 300 °C under 700 bar of H2 while achieving ∼54-71 % conversion to the borohydride. The discovery of a means of dramatically lowering the conditions required for the hydrogenation of MgB2 is an important step towards the development of a practical onboard hydrogen storage system based on hydrogen cycling between Mg(BH4 )2 and MgB2 . We suggest that mechano-milling with THF, Mg, and/or MgH2 may possibly introduce defects in the MgB2 structure which enhance hydrogenation. The ability to activate the MgB2 through the introduction of structural defects transcends its relevance to hydrogen storage, as a method of overcoming its chemical inertness provides the key to harnessing other interesting properties of this material.

4.
ACS Appl Mater Interfaces ; 16(15): 19780-19791, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38584348

RESUMO

Operando electrochemical attenuated total reflection surface-enhanced infrared absorption spectroscopy (EC ATR-SEIRAS) is a valuable method for a fundamental understanding of electrochemical interfaces under real operating conditions. The applicability of this method depends on the ability to tune the optical and catalytic properties of an electrode film, and it thus requires unique optimization for any given material. Motivated by the growing interest in Sn-based electrocatalysts for selective reduction of CO2 to formate species, we investigate several Sn thin-film synthesis routes for the resulting SEIRA signal response. We compare the SEIRA performance of thermally evaporated metallic Sn to a series of Sn-based films on top of a SEIRA-active Au substrate (metallic Sn, oxide-derived metallic Sn, and metal oxide SnOx). Using alkanethiol self-assembled monolayers as a probe, we find that electrodepositing metallic catalyst films on top of SEIRA-active Au substrates yield higher signal relative to thermal evaporation as well as higher signal than the independent SEIRA-active Au underlayer. These observations come despite the fact that thermally evaporated Sn has a significantly higher surface roughness (and thus higher adsorbate population), suggesting specific SEIRA-magnifying effects for the stacked films. Finally, we applied these films to observe the electrochemical conversion of CO2. Differences are observed in spectral features based on the composition of the electrode being either metallic or oxide-derived metallic Sn, implying differences in their respective reaction pathways.

5.
Dalton Trans ; 51(18): 7268-7273, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35475486

RESUMO

Coordination complexes of Mg(BH4)2 are of interest for energy storage, ranging from hydrogen storage in BH4 to electrochemical storage in Mg based batteries. Understanding the stability of these complexes is crucial since storage materials are expected to undergo multiple charging and discharging cycles. To do so, we examined the thermal stabilities of the 1 : 1 mixtures of Mg(BH4)2 with different glymes by DSC-TGA, TPD-MS and powder XRD analysis. Despite their structural similarities, these mixtures show diverse phase transitions, speciations and decomposition pathways as a function of linker length.

6.
ACS Appl Energy Mater ; 4(4): 3737-3747, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37153859

RESUMO

In the search for energy storage materials, metal octahydrotriborates, M(B3H8) n , n = 1 and 2, are promising candidates for applications such as stationary hydrogen storage and all-solid-state batteries. Therefore, we studied the thermal conversion of unsolvated Mg(B3H8)2 to BH4 - as-synthesized and in the presence of MgH2. The conversion of our unsolvated Mg(B3H8)2 starts at ∼100 °C and yields ∼22 wt % of BH4 - along with the formation of (closo-hydro)borates and volatile boranes. This loss of boron (B) is a sign of poor cyclability of the system. However, the addition of activated MgH2 to unsolvated Mg(B3H8)2 drastically increases the thermal conversion to 85-88 wt % of BH4 - while simultaneously decreasing the amounts of B-losses. Our results strongly indicate that the presence of activated MgH2 substantially decreases the formation of (closo-hydro)borates and provides the necessary H2 for the B3H8-to-BH4 conversion. This is the first report of a metal octahydrotriborate system to selectively convert to BH4 - under moderate conditions of temperature (200 °C) in less than 1 h, making the MgB3H8-MgH2 system very promising for energy storage applications.

7.
ACS Omega ; 6(47): 31907-31918, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34870013

RESUMO

We synthesized and characterized a novel iron(II) aceto EMIM coordination compound, which has a simplified empirical formula Fe4(OAc)10[EMIM]2, in two different hydration forms: as anhydrous monoclinic compound and triclinic dihydrate Fe4(OAc)10[EMIM]2·2H2O. The dihydrate compound is isostructural with recently reported Mn4(OAc)10[EMIM]2·2H2O, while the anhydrate is a superstructure of the Mn counterpart, suggesting the existence of solid solutions. Both new Fe compounds contain chains of Fe2+ octahedrally coordinated exclusively by acetate groups. The EMIM moieties do not interact directly with the Fe2+ and contribute to the structural framework of the compound through van der Waals forces and C-H···O hydrogen bonds with the acetate anions. The compounds have a melting temperature of ∼94 °C; therefore, they can be considered metal-containing ionic liquids. Differential thermal analysis indicates three endothermic transitions associated with melting, structural rearrangement in the molten state at about 157 °C, and finally, thermal decomposition of the Fe4(OAc)10[EMIM]2. Thermogravimetric analyses indicate an ∼72 wt % mass loss during the decomposition at 280-325 °C. The Fe4(OAc)10[EMIM]2 compounds have higher thermal stability than their Mn counterparts and [EMIM][OAc] but lower compared to iron(II) acetate. Temperature-programmed desorption coupled with mass spectrometry shows that the decomposition pathway of the Fe4(OAc)10[EMIM]2 involves four distinct regimes with peak temperatures at 88, 200, 267, and 345 °C. The main species observed in the decomposition of the compound are CH3, H2O, N2, CO, OC-CH3, OH-CO, H3C-CO-CH3, and H3C-O-CO-CH3. Variable-temperature infrared vibrational spectroscopy indicates that the phase transition at 160-180 °C is associated with a reorientation of the acetate ions, which may lead to a lower interaction with the [EMIM]+ before the decomposition of the Fe4(OAc)10[EMIM]2 upon further heating. The Fe4(OAc)10[EMIM]2 compounds are porous, plausibly capable of accommodating other types of molecules.

8.
Adv Mater ; 31(44): e1904252, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31539180

RESUMO

Leveraging molecular-level controls to enhance CO2 capture in solid-state materials has received tremendous attention in recent years. Here, a new class of hybrid nanomaterials constructed from intrinsically porous γ-Mg(BH4 )2 nanocrystals and reduced graphene oxide (MBHg) is described. These nanomaterials exhibit kinetically controlled, irreversible CO2 uptake profiles with high uptake capacities (>19.9 mmol g-1 ) at low partial pressures and temperatures between 40 and 100 °C. Systematic experiments and first-principles calculations reveal the mechanism of reaction between CO2 and MBHg and unveil the role of chemically activated, metastable (BH3 -HCOO)- centers that display more thermodynamically favorable reaction and potentially faster reaction kinetics than the parent BH4 - centers. Overall, it is demonstrated that size reduction to the nanoscale regime and the generation of reactive, metastable intermediates improve the CO2 uptake properties in metal borohydride nanomaterials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA