Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sports (Basel) ; 10(11)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36422955

RESUMO

Though research suggests that basketball players spend approximately 31% of game actions shuffling laterally, limited data are available on the kinetic factors that separate fast and slow shufflers. The purpose of this study was twofold: (1.) Examine the reliability of kinetic metrics from a single-leg Lateral Countermovement Jump (LCMJ) (2.) Determine if kinetic metrics from the LCMJ can stratify above (i.e., "fast") or below (i.e., "slow") median shuffling performance. Twenty professional basketball players participated in the reliability study (21.7 ± 3.5 years, 1.98 ± 0.1 m; 89.9 ± 10.9 kg). One hundred seven professional and thirty-three collegiate basketball players (N = 140) (22.7 ± 3.5 years, 2.0 ± 0.1 m; 98.4 ± 11.9 kg) participated in the experimental study examining the ability of LCMJ kinetics to stratify shuffling performance. Reliability was assessed using Bland−Altman plots, coefficients of variation (CVs), typical errors (TEs), and intraclass correlation coefficients (ICCs). Anthropometric and LCMJ kinetic differences between fast and slow shufflers were assessed with an independent t-test. Four kinetic metrics (peak vertical force, peak lateral force, relative lateral force, and lateral impulse) met within- and between-session reliability thresholds (CV < 10% and ICC > 0.70). Faster shufflers generated significantly more relative lateral force than their slower counterparts (9.51 ± 0.8 Nx/kg vs. 8.9 ± 0.9 Nx/kg, %Diff 6.3, p < 0.00007, ES = 0.70). Basketball practitioners who have access to triaxial force plates may consider adding the LCMJ into their testing battery, as relative lateral force is a reliable metric that can stratify fast and slow shufflers.

2.
Artigo em Inglês | MEDLINE | ID: mdl-32887399

RESUMO

Previous research has demonstrated large amounts of inter-subject variability in downward (unweighting & braking) phase strategies in the countermovement jump (CMJ). The purpose of this study was to characterize downward phase strategies and associated temporal, kinematic and kinetic CMJ variables. One hundred and seventy-eight NBA (National Basketball Association) players (23.6 ± 3.7 years, 200.3 ± 8.0 cm; 99.4 ± 11.7 kg; CMJ height 68.7 ± 7.4 cm) performed three maximal CMJs. Force plate and 3D motion capture data were integrated to obtain kinematic and kinetic outputs. Afterwards, athletes were split into clusters based on downward phase characteristics (k-means cluster analysis). Lower limb joint angular displacement (i.e., delta flexion) explained the highest portion of point variability (89.3%), and three clusters were recommended (Ball Hall Index). Delta flexion was significantly different between clusters and players were characterized as "stiff flexors", "hyper flexors", or "hip flexors". There were no significant differences in jump height between clusters (p > 0.05). Multiple regression analyses indicated that most of the jumping height variance was explained by the same four variables, (i.e., sum concentric relative force, knee extension velocity, knee extension acceleration, and height) regardless of the cluster (p < 0.05). However, each cluster had its own unique set of secondary predictor variables.


Assuntos
Basquetebol , Articulação do Joelho , Movimento , Adulto , Basquetebol/fisiologia , Fenômenos Biomecânicos , Humanos , Extremidade Inferior , Masculino , Amplitude de Movimento Articular , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA