Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Mar Drugs ; 21(11)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37999407

RESUMO

Blue Haslea species are marine benthic pennate diatoms able to synthesize a blue-green water-soluble pigment, like marennine produced by H. ostrearia Simonsen. New species of Haslea synthetizing blue pigments were recently described (H. karadagensis, H. nusantara, H. provincialis and H. silbo). Their marennine-like pigments have allelopathic, antioxidative, antiviral and antibacterial properties, which have been demonstrated in laboratory conditions. Marennine is also responsible for the greening of oysters, for example, in the Marennes Oléron area (France), a phenomenon that has economical and patrimonial values. While blue Haslea spp. blooms have been episodically observed in natural environments (e.g., France, Croatia, USA), their dynamics have only been investigated in oyster ponds. This work is the first description of blue Haslea spp. benthic blooms that develop in open environments on the periphyton, covering turf and some macroalgae-like Padina. Different sites were monitored in the Mediterranean Sea (Corsica, France and Croatia) and two different blue Haslea species involved in these blooms were identified: H. ostrearia and H. provincialis. A non-blue Haslea species was also occasionally encountered. The benthic blooms of blue Haslea followed the phytoplankton spring bloom and occurred in shallow calm waters, possibly indicating a prominent role of light to initiate the blooms. In the absence of very strong winds and water currents that can possibly disaggregate the blue biofilm, the end of blooms coincided with the warming of the upper water masses, which might be profitable for other microorganisms and ultimately lead to a shift in the biofilm community.


Assuntos
Diatomáceas , Ostreidae , Animais , Mar Mediterrâneo , Fenóis , Água
2.
Mar Drugs ; 20(4)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35447907

RESUMO

The marine pennate diatom Haslea ostrearia has long been known for its characteristic blue pigment marennine, which is responsible for the greening of invertebrate gills, a natural phenomenon of great importance for the oyster industry. For two centuries, this taxon was considered unique; however, the recent description of a new blue Haslea species revealed unsuspected biodiversity. Marennine-like pigments are natural blue dyes that display various biological activities-e.g., antibacterial, antioxidant and antiproliferative-with a great potential for applications in the food, feed, cosmetic and health industries. Regarding fundamental prospects, researchers use model organisms as standards to study cellular and physiological processes in other organisms, and there is a growing and crucial need for more, new and unconventional model organisms to better correspond to the diversity of the tree of life. The present work, thus, advocates for establishing H. ostrearia as a new model organism by presenting its pros and cons-i.e., the interesting aspects of this peculiar diatom (representative of benthic-epiphytic phytoplankton, with original behavior and chemodiversity, controlled sexual reproduction, fundamental and applied-oriented importance, reference genome, and transcriptome will soon be available); it will also present the difficulties encountered before this becomes a reality as it is for other diatom models (the genetics of the species in its infancy, the transformation feasibility to be explored, the routine methods needed to cryopreserve strains of interest).


Assuntos
Cosméticos , Diatomáceas , Ostreidae , Animais , Antioxidantes/farmacologia , Diatomáceas/fisiologia , Pigmentação
3.
Mar Drugs ; 14(9)2016 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-27598176

RESUMO

The search for novel compounds of marine origin has increased in the last decades for their application in various areas such as pharmaceutical, human or animal nutrition, cosmetics or bioenergy. In this context of blue technology development, microalgae are of particular interest due to their immense biodiversity and their relatively simple growth needs. In this review, we discuss about the promising use of microalgae and microalgal compounds as sources of natural antibiotics against human pathogens but also about their potential to limit microbial infections in aquaculture. An alternative to conventional antibiotics is needed as the microbial resistance to these drugs is increasing in humans and animals. Furthermore, using natural antibiotics for livestock could meet the consumer demand to avoid chemicals in food, would support a sustainable aquaculture and present the advantage of being environmentally friendly. Using natural and renewable microalgal compounds is still in its early days, but considering the important research development and rapid improvement in culture, extraction and purification processes, the valorization of microalgae will surely extend in the future.


Assuntos
Anti-Infecciosos/farmacologia , Aquicultura/métodos , Infecções/tratamento farmacológico , Microalgas/química , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Infecciosos/uso terapêutico , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Eucariotos , Humanos , Testes de Sensibilidade Microbiana , Micoses/tratamento farmacológico , Viroses/tratamento farmacológico
4.
Mar Drugs ; 12(6): 3161-89, 2014 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-24879542

RESUMO

In diatoms, the main photosynthetic pigments are chlorophylls a and c, fucoxanthin, diadinoxanthin and diatoxanthin. The marine pennate diatom Haslea ostrearia has long been known for producing, in addition to these generic pigments, a water-soluble blue pigment, marennine. This pigment, responsible for the greening of oysters in western France, presents different biological activities: allelopathic, antioxidant, antibacterial, antiviral, and growth-inhibiting. A method to extract and purify marennine has been developed, but its chemical structure could hitherto not be resolved. For decades, H. ostrearia was the only organism known to produce marennine, and can be found worldwide. Our knowledge about H. ostrearia-like diatom biodiversity has recently been extended with the discovery of several new species of blue diatoms, the recently described H. karadagensis, H. silbo sp. inedit. and H. provincialis sp. inedit. These blue diatoms produce different marennine-like pigments, which belong to the same chemical family and present similar biological activities. Aside from being a potential source of natural blue pigments, H. ostrearia-like diatoms thus present a commercial potential for aquaculture, cosmetics, food and health industries.


Assuntos
Diatomáceas/metabolismo , Fenóis/farmacologia , Pigmentos Biológicos/farmacologia , Animais , Aquicultura/métodos , Cosméticos/química , Humanos
5.
Toxics ; 11(7)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37505596

RESUMO

Coastal zones sustain extensive biodiversity, support key processes for ocean dynamics, and influence the balance of the global environment. They also provide resources and services to communities, determine their culture, and are the basis for their economic growth. Cartagena Bay in the Colombian Caribbean is the place of the establishment of one of the country's main cities, which has a great historical and tourist attraction, and it is also the location of the main commercial port and a great variety of industries. Historically, it has been affected by several environmental impacts and intense pollution. This situation has gained the attention of different researchers, so herein is presented a literature review with a systematic approach using RStudio's bibliometrix on the presence of pollutants and the impact on biodiversity in recent decades, providing a critical analysis of the state of Cartagena Bay and its future needs to ensure its recovery and conservation. In addition, the socioeconomic dynamics related to the environmental state of Cartagena Bay are presented from the framework drivers, pressures, status, impacts, and responses (DPSIR). The update and critical understanding of the sources, fate, and effects of pollution are important not only for the knowledge of the status of this singular ecosystem but also to encourage future research and entrench evidence to support decision makers' actions. This review highlights that several pollutants that have been detected exceeding sediment quality guidelines, like As, Cd, Hg, and PAH, are also reported to bioaccumulate and cause damage throughout the trophic levels of the coastal environment. In addition, the potential use of sentinel species and biomarkers for their monitoring is discussed. Finally, the factors that cause pollution and threaten the state of the bay continue to exert pressure and impact; thus, there is a call for the further monitoring of this ecosystem and the strengthening of policies and regulations.

6.
Toxics ; 11(5)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37235268

RESUMO

Cetaceans are recognized as bioindicators of pollution in oceans. These marine mammals are final trophic chain consumers and easily accumulate pollutants. For example, metals are abundant in oceans and commonly found in the cetacean tissues. Metallothioneins (MTs) are small non-enzyme proteins involved in metal cell regulation and are essential in many cellular processes (cell proliferation, redox balance, etc.). Thus, the MT levels and the concentrations of metals in cetacean tissue are positively correlated. Four types of metallothioneins (MT1, 2, 3, and 4) are found in mammals, which may have a distinct expression in tissues. Surprisingly, only a few genes or mRNA-encoding metallothioneins are characterized in cetaceans; molecular studies are focused on MT quantification, using biochemical methods. Thus, we characterized, in transcriptomic and genomic data, more than 200 complete sequences of metallothioneins (mt1, 2, 3, and 4) in cetacean species to study their structural variability and to propose to the scientific research community Mt genes dataset to develop in future molecular approaches which will study the four types of metallothioneins in diversified organs (brain, gonad, intestine, kidney, stomach, etc.).

7.
Toxics ; 12(1)2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38250985

RESUMO

Caffeine is one of the most consumed substances by humans through foodstuffs (coffee, tea, drugs, etc.). Its human consumption releases a high quantity of caffeine into the hydrological network. Thus, caffeine is now considered an emergent pollutant sometimes found at high concentrations in oceans and seas. Surprisingly, little research has been conducted on the molecular responses induced by caffeine in marine organisms. We studied, in laboratory conditions, six phylogenetically distant species that perform distinct ecological functions (Actinia equina and Aulactinia verrucosa (cnidarians, predator), Littorina littorea (gastropod, grazer), Magallana gigas (bivalve, filter-feeder), and Carcinus maenas and Pachygrapsus marmoratus (crabs, predator and scavenger)) subjected to caffeine exposure. The antioxidant responses (catalase, CAT; glutathione peroxidase, GPx; superoxide dismutase, SOD), lipid peroxidation (MDA), and the acetylcholinesterase (AChE) activity were estimated when the organisms were exposed to environmental caffeine concentrations (5 µg/L (low), 10 µg/L (high)) over 14 days. Differential levels of responses and caffeine effects were noted in the marine invertebrates, probably in relation to their capacity to metabolization the pollutant. Surprisingly, the filter feeder (M. gigas, oyster) did not show enzymatic responses or lipid peroxidation for the two caffeine concentrations tested. The marine gastropod (grazer) appeared to be more impacted by caffeine, with an increase in activities for all antioxidative enzymes (CAT, GPx, SOD). In parallel, the two cnidarians and two crabs were less affected by the caffeine contaminations. However, caffeine was revealed as a neurotoxic agent to all species studied, inducing high inhibition of AChE activity. This study provides new insights into the sublethal impacts of caffeine at environmentally relevant concentrations in marine invertebrates.

8.
Toxics ; 11(6)2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37368624

RESUMO

Solar salterns and salt marshes are unique ecosystems with special physicochemical features and characteristic biota. Currently, there are very few studies focused on the impacts of pollution on these economic and ecological systems. Unfortunately, diversified pollution (metals, Polycyclic Aromatic Hydrocarbons, etc.) has been detected in these complex ecosystems. These hypersaline environments are under increasing threat due to anthropogenic pressures. Despite this, they represent a valuable source of microbial diversity, with taxa displaying special features in terms of environmental remediation capacities as well as economical species such as Artemia spp. (Branchiopoda) and Dunaliella salina (Chlorophyta). In this review, we discuss the impacts of pollution on these semi-artificial systems. Therefore, we have indicated the sentinel species identified in plankton communities, which can be used in ecotoxicological investigations in solar salterns. In future, researchers should increase their interest in pollution assessment in solar salterns and salt marshes.

9.
Toxics ; 11(5)2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37235241

RESUMO

Heavy metal pollution can adversely impact marine life, such as crabs, which can accumulate it in different organs and potentially transfer and biomagnify along the food chain in aquatic ecosystems. This study aimed to examine the concentrations of heavy metals (Cd, Cu, Pb, and Zn) in sediment, water, and crab tissues (gills, hepatopancreas, and carapace) of the blue swimmer crab Portunus pelagicus in the coastal areas of Kuwait, northwestern Arabian Gulf. Samples were collected from Shuwaikh Port, Shuaiba Port, and Al-Khiran areas. The accumulation of metals in crabs were higher in the carapace > gill > digestive gland, and the highest metal concentration was found in crabs collected from Shuwaikh > Shuaiba > Al-Khiran. The metal concentrations in the sediments were in the order Zn > Cu > Pb > Cd. Zn was the highest metal concentration detected in marine water sampled from the Al-Khiran Area, whereas the lowest metal was Cd sampled in water from the Shuwaikh Area. The results of this study validate the marine crab P. pelagicus as a relevant sentinel and prospective bioindicator for evaluating heavy metal pollution in marine ecosystems.

10.
Environ Sci Pollut Res Int ; 29(19): 28339-28358, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34989994

RESUMO

Participants in the coastal socio-economy of the Mediterranean Sea, such as industries, aquaculture, urban populations, conglomerates, and tourists, create intense anthropogenic pressures on marine ecosystems (such as the release of trace metals). This raises concerns about their impact on the surrounding environment and on marine organisms, including those collected for human consumption. This study introduces the possibility of using Patella caerulea (Linnaeus 1758), indigenous to the Mediterranean Sea, as a biosentinel of marine pollution. This study proposes coupling environmental (bioaccumulation) and toxicological (redox homeostasis) measures of bioavailability with genetic variability (COI mtDNA) assessments. Concentrations of six trace metals (cadmium, copper, iron, lead, nickel, and zinc) were measured in surface seawater and in P. caerulea individuals collected from four coastal stations on the Tunisian coast where different levels of metal contamination have occurred. The quantified biomarkers involved the determination of antioxidant defense enzymes, catalase (CAT), glutathione peroxidase (GPX), superoxide dismutase (SOD), and the measurement of lipid peroxidation indicated by malondialdehyde (MDA) levels. Our study identified critical levels of metal contamination among locations in the Gulf of Gabes. Concomitantly, the induction of antioxidant biomarkers (especially SOD and GPX) was observed, highlighting the potential of P. caerulea to acclimate to stressful pollution conditions. Molecular analysis of COI (mtDNA) revealed low discrimination between the four P. caerulea populations, highlighting the role of marine currents in the Mediterranean Sea in the dispersal and passive transportation of limpet larvae, allowing an exchange of individuals among physically separated, P. caerulea populations.


Assuntos
Gastrópodes , Metais Pesados , Oligoelementos , Poluentes Químicos da Água , Animais , Antioxidantes/análise , Biomarcadores , DNA Mitocondrial , Ecossistema , Monitoramento Ambiental , Metais Pesados/análise , Superóxido Dismutase , Oligoelementos/análise , Poluentes Químicos da Água/análise
11.
Mar Pollut Bull ; 168: 112392, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33894587

RESUMO

The concentrations of four trace metals (Cd, Cu, Pb, and Zn) were investigated for the first time in phytoplankton, zooplankton, and the seawater samples collected from the coast of Gabès, Tunisia, Mediterranean Sea. For over 40 years, this coast has witnessed significant anthropogenic impacts form fertilizer processing. Results obtained for Cd, Cu, Pb, and Zn in seawater far exceed the concentration reported for other Mediterranean coastal waters, highlighting the Gulf of Gabès as a pollution hotspot. The average metals concentration was in the order Zn > Pb > Cu > Cd in water, and phytoplankton, whereas Pb > Zn > Cu > Cd in zooplankton. The biomagnification in phytoplankton and zooplankton for Zn, Pb, Cu, and Cd was 116, 56, 38, 31, and 127, 157, 30 and 27. The biomagnification of Zn and Pb was higher in zooplankton than phytoplankton, while Cu and Cd were higher in phytoplankton.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Animais , Monitoramento Ambiental , Mar Mediterrâneo , Metais Pesados/análise , Fitoplâncton , Água do Mar , Tunísia , Poluentes Químicos da Água/análise , Zooplâncton
12.
Biology (Basel) ; 10(4)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33919887

RESUMO

Specimens of a new species of blue diatoms from the genus Haslea Simonsen were discovered in geographically distant sampling sites, first in the Canary Archipelago, then North Carolina, Gulf of Naples, the Croatian South Adriatic Sea, and Turkish coast of the Eastern Mediterranean Sea. An exhaustive characterization of these specimens, using a combined morphological and genomic approach led to the conclusion that they belong to a single new to science cosmopolitan species, Haslea silbo sp. nov. A preliminary characterization of its blue pigment shows similarities to marennine produced by Haslea ostrearia, as evidenced by UV-visible spectrophotometry and Raman spectrometry. Life cycle stages including auxosporulation were also observed, providing data on the cardinal points of this species. For the two most geographically distant populations (North Carolina and East Mediterranean), complete mitochondrial and plastid genomes were sequenced. The mitogenomes of both strains share a rare atp6 pseudogene, but the number, nature, and positions of the group II introns inside its cox1 gene differ between the two populations. There are also two pairs of genes fused in single ORFs. The plastid genomes are characterized by large regions of recombination with plasmid DNA, which are in both cases located between the ycf35 and psbA genes, but whose content differs between the strains. The two sequenced strains hosts three plasmids coding for putative serine recombinase protein whose sequences are compared, and four out of six of these plasmids were highly conserved.

13.
Gene ; 396(1): 84-92, 2007 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-17433575

RESUMO

Crabs of the Bythograeidae family (Crustacea: Brachyura: Bythogreoidea) are the only endemic crab family living in hydrothermal fields. The hydrothermal environment is characterized by unique ecological parameters, such as the high temperature gradient around the hydrothermal chimney (2-350 degrees C), a fluid environment containing high levels of metals and numerous gases. The 70-kDa Heat Shock Protein (HSP70) group is the most-studied HSP, because it is ubiquitous, and a strong positive correlation has been found between the amounts of HSP70 produced in response to stress, and the ability of the organism to withstand stressful conditions. The 70-kDa heat shock protein genes from Bythograeids (species analyzed: Bythograea thermydron, Cyanagraea praedator and Segonzacia mesatlantica) were characterized. Our results revealed that Bythograeidae possess genes which are similar with those present in Xanthids (coastal crabs). The deduced protein sequences displayed motifs distinct from those in the other crustacean HSC70/HSP70s available in the databases. Phylogenetic analysis showed that these members of HSP70 family identified in Bythograeidae and Xanthidae constitute a new subgroup within this family.


Assuntos
Braquiúros/genética , Proteínas de Choque Térmico HSP70/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas de Choque Térmico HSP70/química , Íntrons/genética , Dados de Sequência Molecular , Filogenia
14.
Artigo em Inglês | MEDLINE | ID: mdl-26812300

RESUMO

The Na(+)/K(+) ATPase is a ubiquitous pump coordinating the transport of Na(+) and K(+) across the membrane of cells and its role is fundamental to cellular functions. It is heteromer in eukaryotes including two or three subunits (α, ß and γ which is specific to the vertebrates). The catalytic functions of the enzyme have been attributed to the α subunit. Several complete α protein sequences are available, but only few gene structures were characterized. We identified the genomic sequences coding the α-subunit of the Na(+)/K(+) ATPase, from the whole-genome shotgun contigs (WGS), NCBI Genomes (chromosome), Genomic Survey Sequences (GSS) and High Throughput Genomic Sequences (HTGS) databases across distinct phyla. One copy of the α subunit gene was found in Annelida, Arthropoda, Cnidaria, Echinodermata, Hemichordata, Mollusca, Placozoa, Porifera, Platyhelminthes, Urochordata, but the nematodes seem to possess 2 to 4 copies. The number of introns varied from 0 (Platyhelminthes) to 26 (Porifera); and their localization and length are also highly variable. Molecular phylogenies (Maximum Likelihood and Maximum Parsimony methods) showed some clusters constituted by (Chordata/(Echinodermata/Hemichordata)) or (Plathelminthes/(Annelida/Mollusca)) and a basal position for Porifera. These structural analyses increase our knowledge about the evolutionary events of the α subunit genes in the invertebrates.


Assuntos
Genômica , Invertebrados/enzimologia , Subunidades Proteicas/genética , ATPase Trocadora de Sódio-Potássio/genética , Sequência de Aminoácidos , Animais , Biocatálise , Bases de Dados Genéticas , Evolução Molecular , Invertebrados/genética , Invertebrados/metabolismo , Filogenia , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , ATPase Trocadora de Sódio-Potássio/química , ATPase Trocadora de Sódio-Potássio/metabolismo
15.
Gene ; 591(1): 97-107, 2016 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-27374152

RESUMO

The 70kDa heat shock proteins (HSP70) are considered the most conserved members of the HSP family. These proteins are primordial to the cell, because of their implications in many cellular pathways (e. g., development, immunity) and also because they minimize the effects of multiple stresses (e. g., temperature, pollutants, salinity, radiations). In the cytosol, two ubiquitous HSP70s with either a constitutive (HSC70) or an inducible (HSP70) expression pattern are found in all metazoan species, encoded by 5 or 6 genes (Drosophila melanogaster or yeast and human respectively). The cytosolic HSP70 protein family is considered a major actor in environmental adaptation, and widely used in ecology as an important biomarker of environmental stress. Nevertheless, the diversity of cytosolic HSP70 remains unclear amongst the Athropoda phylum, especially within decapods. Using 122 new and 311 available sequences, we carried out analyses of the overall cytosolic HSP70 diversity in arthropods (with a focus on decapods) and inferred molecular phylogenies. Overall structural and phylogenetic analyses showed a surprisingly high diversity in cytosolic HSP70 and revealed the existence of several unrecognised groups. All crustacean HSP70 sequences present signature motifs and molecular weights characteristic of non-organellar HSP70, with multiple specific substitutions in the protein sequence. The cytosolic HSP70 family in arthropods appears to be constituted of at least three distinct groups (annotated as A, B and C), which comprise several subdivisions, including both constitutive and inducible forms. Group A is constituted by several classes of Arthropods, while group B and C seem to be specific to Malacostraca and Hexapoda/Chelicerata, respectively. The HSP70 organization appeared much more complex than previously suggested, and far beyond a simple differentiation according to their expression pattern (HSC70 versus HSP70). This study proposes a new classification of cytosolic HSP70 and an evolutionary model of the distinct forms amongst the Arthropoda phylum. The observed differences between HSP70 groups will probably have to be linked to distinct interactions with co-chaperones or other co-factors.


Assuntos
Citosol/metabolismo , Decápodes/genética , Variação Genética , Proteínas de Choque Térmico HSP70/genética , Filogenia , Sequência de Aminoácidos , Animais , Bases de Dados de Proteínas , Íntrons/genética , Estrutura Secundária de Proteína
16.
J Parasitol ; 88(1): 135-40, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12053953

RESUMO

In the polymorphic Teladorsagia circumcincta (morphs circumcincta and trifurcata), a sheep and goat line (SGL) and a goat line (GL) have been previously described on the basis of the malate dehydrogenase allozyme polymorphism (MDH-2) and of the morphology of the dorsal ray. The GL were never found alone in 1 host, so the status of species was not given to these 2 lines. To investigate further whether there are other genetic markers that will delineate them, we collected T. circumcincta worms from goat and sheep at 8 farms in Touraine (west-central France). The worms were identified individually as being SGL or GL on the basis of MDH-2 polymorphism. This distinctiveness was corroborated by sequences of the beta-tubulin isotype I gene, the second internal transcribed spacer (ITS2) of their rDNA, and the nicotinamide dehydrogenase (ND4) gene of their mDNA. The extent of the divergence in the 3 additional genetic markers was such that SGL and GL may be considered as 2 species. A third putative species was found in the SGL line based exclusively on the ND4 gene. These findings suggest that T. circumcincta is a species complex and that further investigation is required on a wider geographic scale.


Assuntos
Cabras/parasitologia , Ovinos/parasitologia , Trichostrongyloidea/classificação , Trichostrongyloidea/genética , Tricostrongiloidíase/veterinária , Animais , Sequência de Bases , DNA de Helmintos/análise , DNA de Helmintos/genética , DNA Espaçador Ribossômico , Doenças das Cabras/parasitologia , Malato Desidrogenase/genética , Masculino , Dados de Sequência Molecular , NADH Desidrogenase/genética , Polimorfismo Genético , Análise de Sequência de DNA , Doenças dos Ovinos/parasitologia , Trichostrongyloidea/isolamento & purificação , Tricostrongiloidíase/parasitologia , Tubulina (Proteína)/genética
17.
Protist ; 164(3): 340-51, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23474208

RESUMO

We present the first study examining mtDNA transmission in diatoms, using sexual progeny of the pennate species Haslea ostrearia (Naviculaceae). A fragment of the cytochrome oxidase subunit I gene (cox1) with 7 nucleic substitutions between parental clones was used as a parental tracer in 16 F1 clones obtained from two pairs of mating crosses. Each cross involved a parental clone isolated from France (Bay of Bourgneuf) and Sweden (Kattegat Bay). We determined that all progeny possessed only one cox1 parental haplotype. These results suggest that the mitochondrial DNA transmission in H. ostrearia is uniparental. Implications and new topics of investigation are discussed.


Assuntos
Cruzamentos Genéticos , DNA Mitocondrial/genética , Diatomáceas/genética , Animais , Sequência de Bases , Ciclo-Oxigenase 1/química , Ciclo-Oxigenase 1/genética , Diatomáceas/classificação , Diatomáceas/fisiologia , França , Haplótipos , Mitocôndrias/genética , Dados de Sequência Molecular , Análise de Sequência de DNA , Suécia
18.
PLoS One ; 7(3): e32066, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22403623

RESUMO

Brachyuran crabs of the family Bythograeidae are endemic to deep-sea hydrothermal vents and represent one of the most successful groups of macroinvertebrates that have colonized this extreme environment. Occurring worldwide, the family includes six genera (Allograea, Austinograea, Bythograea, Cyanagraea, Gandalfus, and Segonzacia) and fourteen formally described species. To investigate their evolutionary relationships, we conducted Maximum Likelihood and Bayesian molecular phylogenetic analyses, based on DNA sequences from fragments of three mitochondrial genes (16S rDNA, Cytochrome oxidase I, and Cytochrome b) and three nuclear genes (28S rDNA, the sodium-potassium ATPase a-subunit 'NaK', and Histone H3A). We employed traditional concatenated (i.e., supermatrix) phylogenetic methods, as well as three recently developed Bayesian multilocus methods aimed at inferring species trees from potentially discordant gene trees. We found strong support for two main clades within Bythograeidae: one comprising the members of the genus Bythograea; and the other comprising the remaining genera. Relationships within each of these two clades were partially resolved. We compare our results with an earlier hypothesis on the phylogenetic relationships among bythograeid genera based on morphology. We also discuss the biogeography of the family in the light of our results. Our species tree analyses reveal differences in how each of the three methods weighs conflicting phylogenetic signal from different gene partitions and how limits on the number of outgroup taxa may affect the results.


Assuntos
Braquiúros/classificação , Fontes Hidrotermais , Filogenia , Animais , Teorema de Bayes , Braquiúros/genética , DNA Mitocondrial/genética , Bases de Dados Genéticas , Evolução Molecular , Funções Verossimilhança , Alinhamento de Sequência
19.
Artigo em Inglês | MEDLINE | ID: mdl-18403273

RESUMO

Hydrothermal vent conditions can alter DNA and hydrothermal organisms may develop detoxification mechanisms and/or genetic adaptations. Hydrothermal vent animals notably synthesize a high quantity of metallothioneins (MT). Recent studies have revealed that the levels of MT within hydrothermal crustacean tissues are higher than those found in other vent animals. To improve our understanding of the environmental impacts exerted on the vent organisms, we characterized the metallothioneins (cDNA and Mt genes) of several members of the Bythograeidae (Bythograea thermydron, Cyanagraea praedator and Segonzacia mesatlantica) which is the only endemic hydrothermal crab family. In comparison, the isolation of metallothionein cDNA was also carried out in several coastal crab families. The results showed that the hydrothermal crabs possess Mt composed of three exons and two introns presenting conserved splicing signals. The cDNA sequences isolated from distinct crabs showed multiple substitutions. In spite of the unique environmental conditions, the protein sequence analysis revealed no specific amino acid residue for the MT of the three hydrothermal crabs. However, gene expression analysis performed by real-time PCR based on S. mesatlantica (hydrothermal crab) compared to Pachygrapsus marmoratus (coastal crab) confirmed the higher metallothionein induction in hydrothermal crabs suggested by others authors.


Assuntos
Braquiúros/genética , Regulação da Expressão Gênica , Metalotioneína/genética , Adaptação Fisiológica/genética , Processamento Alternativo , Sequência de Aminoácidos , Animais , Oceano Atlântico , Sequência de Bases , Braquiúros/metabolismo , DNA Complementar , Éxons , Temperatura Alta , Íntrons , Metalotioneína/química , Metalotioneína/metabolismo , Dados de Sequência Molecular , Oceano Pacífico , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Análise de Sequência de DNA , Análise de Sequência de Proteína , Regulação para Cima
20.
Artigo em Inglês | MEDLINE | ID: mdl-16326142

RESUMO

Metallothioneins (MTs) are crucial proteins in all organisms for the regulation of essential metals and the detoxification of heavy metals. Many studies have estimated MT levels in mussel tissues to detect marine metal pollution. In this study, we investigated the MT gene structures of the forms present in Mytilus edulis (blue mussel). One MT-10 (2413 bp) gene and one MT-20 (1906 bp) gene were obtained. These MT genes contain three exons and two long introns. The splicing signals for MT-10 and MT-20 were GTA(T/A)GT-(C/T)AG. The structural organization (length of intron, splicing signals, AT content) of MT-10 and MT-20 is compared with other MT genes.


Assuntos
Genes , Metalotioneína/genética , Mytilus edulis/genética , Sequência Rica em At , Animais , Sequência de Bases , Clonagem Molecular , Éxons , Íntrons/genética , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA