Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Nature ; 629(8014): 1091-1099, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38750363

RESUMO

The baobab trees (genus Adansonia) have attracted tremendous attention because of their striking shape and distinctive relationships with fauna1. These spectacular trees have also influenced human culture, inspiring innumerable arts, folklore and traditions. Here we sequenced genomes of all eight extant baobab species and argue that Madagascar should be considered the centre of origin for the extant lineages, a key issue in their evolutionary history2,3. Integrated genomic and ecological analyses revealed the reticulate evolution of baobabs, which eventually led to the species diversity seen today. Past population dynamics of Malagasy baobabs may have been influenced by both interspecific competition and the geological history of the island, especially changes in local sea levels. We propose that further attention should be paid to the conservation status of Malagasy baobabs, especially of Adansonia suarezensis and Adansonia grandidieri, and that intensive monitoring of populations of Adansonia za is required, given its propensity for negatively impacting the critically endangered Adansonia perrieri.


Assuntos
Adansonia , Filogenia , Adansonia/classificação , Adansonia/genética , Biodiversidade , Conservação dos Recursos Naturais , Ecologia , Espécies em Perigo de Extinção , Evolução Molecular , Genoma de Planta/genética , Madagáscar , Dinâmica Populacional , Elevação do Nível do Mar
2.
Plant J ; 112(3): 646-663, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36065632

RESUMO

Simple telomeric repeats composed of six to seven iterating nucleotide units are important sequences typically found at the ends of chromosomes. Here we analyzed their abundance and homogeneity in 42 gymnosperm (29 newly sequenced), 29 angiosperm (one newly sequenced), and eight bryophytes using bioinformatics, conventional cytogenetic and molecular biology approaches to explore their diversity across land plants. We found more than 10 000-fold variation in the amounts of telomeric repeats among the investigated taxa. Repeat abundance was positively correlated with increasing intragenomic sequence heterogeneity and occurrence at non-telomeric positions, but there was no correlation with genome size. The highest abundance/heterogeneity was found in the gymnosperm genus Cycas (Cycadaceae), in which megabase-sized blocks of telomeric repeats (i.e., billions of copies) were identified. Fluorescent in situ hybridization experiments using variant-specific probes revealed canonical Arabidopsis-type telomeric TTTAGGG repeats at chromosome ends, while pericentromeric blocks comprised at least four major telomeric variants with decreasing abundance: TTTAGGG>TTCAGGG >TTTAAGG>TTCAAGG. Such a diversity of repeats was not found in the sister cycad family Zamiaceae or in any other species analyzed. Using immunocytochemistry, we showed that the pericentromeric blocks of telomeric repeats overlapped with histone H3 serine 10 phosphorylation signals. We show that species of Cycas have amplified their telomeric repeats in centromeric and telomeric positions on telocentric chromosomes to extraordinary high levels. The ancestral chromosome number reconstruction suggests their occurrence is unlikely to be the product of ancient Robertsonian chromosome fusions. We speculate as to how the observed chromosome dynamics may be associated with the diversification of cycads.


Assuntos
Cycadopsida , Magnoliopsida , Hibridização in Situ Fluorescente , Cycadopsida/genética , Telômero/genética , Centrômero/genética , Magnoliopsida/genética
3.
Mol Ecol ; 32(17): 4777-4790, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37452724

RESUMO

Whole-genome duplication has shaped the evolution of angiosperms and other organisms, and is important for many crops. Structural reorganization of chromosomes and repatterning of gene expression are frequently observed in allopolyploids, with physiological and ecological consequences. Recurrent origins from different parental populations are widespread among polyploids, resulting in an array of lineages that provide excellent models to uncover mechanisms of adaptation to divergent environments in early phases of polyploid evolution. We integrate here transcriptomic and ecophysiological comparative studies to show that sibling allopolyploid marsh orchid species (Dactylorhiza, Orchidaceae) occur in different habitats (low nutrient fens vs. meadows with mesic soils) and are characterized by a complex suite of intertwined, pronounced ecophysiological differences between them. We uncover distinct features in leaf elemental chemistry, light-harvesting, photoprotection, nutrient transport and stomata activity of the two sibling allopolyploids, which appear to match their specific ecologies, in particular soil chemistry differences at their native sites. We argue that the phenotypic divergence between the sibling allopolyploids has a clear genetic basis, generating ecological barriers that maintain distinct, independent lineages, despite pervasive interspecific gene flow. This suggests that recurrent origins of polyploids bring about a long-term potential to trigger and maintain functional and ecological diversity in marsh orchids and other groups.


Assuntos
Orchidaceae , Áreas Alagadas , Ecossistema , Poliploidia , Aclimatação , Orchidaceae/genética
4.
Heredity (Edinb) ; 131(3): 179-188, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37402824

RESUMO

The classical model of concerted evolution states that hundreds to thousands of ribosomal DNA (rDNA) units undergo homogenization, making the multiple copies of the individual units more uniform across the genome than would be expected given mutation frequencies and gene redundancy. While the universality of this over 50-year-old model has been confirmed in a range of organisms, advanced high throughput sequencing techniques have also revealed that rDNA homogenization in many organisms is partial and, in rare cases, even apparently failing. The potential underpinning processes leading to unexpected intragenomic variation have been discussed in a number of studies, but a comprehensive understanding remains to be determined. In this work, we summarize information on variation or polymorphisms in rDNAs across a wide range of taxa amongst animals, fungi, plants, and protists. We discuss the definition and description of concerted evolution and describe whether incomplete concerted evolution of rDNAs predominantly affects coding or non-coding regions of rDNA units and if it leads to the formation of pseudogenes or not. We also discuss the factors contributing to rDNA variation, such as interspecific hybridization, meiotic cycles, rDNA expression status, genome size, and the activity of effector genes involved in genetic recombination, epigenetic modifications, and DNA editing. Finally, we argue that a combination of approaches is needed to target genetic and epigenetic phenomena influencing incomplete concerted evolution, to give a comprehensive understanding of the evolution and functional consequences of intragenomic variation in rDNA.


Assuntos
Variação Genética , Polimorfismo Genético , Animais , DNA Ribossômico/genética , Mutação , Fungos/genética , Evolução Molecular , Filogenia
5.
Ann Bot ; 131(1): 123-142, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35029647

RESUMO

BACKGROUND AND AIMS: The extent to which genome size and chromosome numbers evolve in concert is little understood, particularly after polyploidy (whole-genome duplication), when a genome returns to a diploid-like condition (diploidization). We study this phenomenon in 46 species of allotetraploid Nicotiana section Suaveolentes (Solanaceae), which formed <6 million years ago and radiated in the arid centre of Australia. METHODS: We analysed newly assessed genome sizes and chromosome numbers within the context of a restriction site-associated nuclear DNA (RADseq) phylogenetic framework. KEY RESULTS: RADseq generated a well-supported phylogenetic tree, in which multiple accessions from each species formed unique genetic clusters. Chromosome numbers and genome sizes vary from n = 2x = 15 to 24 and 2.7 to 5.8 pg/1C nucleus, respectively. Decreases in both genome size and chromosome number occur, although neither consistently nor in parallel. Species with the lowest chromosome numbers (n = 15-18) do not possess the smallest genome sizes and, although N. heterantha has retained the ancestral chromosome complement, n = 2x = 24, it nonetheless has the smallest genome size, even smaller than that of the modern representatives of ancestral diploids. CONCLUSIONS: The results indicate that decreases in genome size and chromosome number occur in parallel down to a chromosome number threshold, n = 20, below which genome size increases, a phenomenon potentially explained by decreasing rates of recombination over fewer chromosomes. We hypothesize that, more generally in plants, major decreases in genome size post-polyploidization take place while chromosome numbers are still high because in these stages elimination of retrotransposons and other repetitive elements is more efficient. Once such major genome size change has been accomplished, then dysploid chromosome reductions take place to reorganize these smaller genomes, producing species with small genomes and low chromosome numbers such as those observed in many annual angiosperms, including Arabidopsis.


Assuntos
Nicotiana , Solanaceae , Nicotiana/genética , Filogenia , Solanaceae/genética , Tamanho do Genoma , Genoma de Planta , Evolução Molecular , Austrália , Poliploidia , Verduras/genética , Cromossomos de Plantas
6.
Int J Mol Sci ; 24(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36769031

RESUMO

Giant genomes are rare across the plant kingdom and their study has focused almost exclusively on angiosperms and gymnosperms. The scarce genetic data that are available for ferns, however, indicate differences in their genome organization and a lower dynamism compared to other plant groups. Tmesipteris is a small genus of mainly epiphytic ferns that occur in Oceania and several Pacific Islands. So far, only two species with giant genomes have been reported in the genus, T. tannensis (1C = 73.19 Gbp) and T. obliqua (1C = 147.29 Gbp). Low-coverage genome skimming sequence data were generated in these two species and analyzed using the RepeatExplorer2 pipeline to identify and quantify the repetitive DNA fraction of these genomes. We found that both species share a similar genomic composition, with high repeat diversity compared to taxa with small (1C < 10 Gbp) genomes. We also found that, in general, characterized repetitive elements have relatively high heterogeneity scores, indicating ancient diverging evolutionary trajectories. Our results suggest that a whole genome multiplication event, accumulation of repetitive elements, and recent activation of those repeats have all played a role in shaping these genomes. It will be informative to compare these data in the future with data from the giant genome of the angiosperm Paris japonica, to determine if the structures observed here are an emergent property of massive genomic inflation or derived from lineage specific processes.


Assuntos
Gleiquênias , Magnoliopsida , Gleiquênias/genética , Genoma de Planta , DNA de Plantas/genética , Sequências Repetitivas de Ácido Nucleico , Genômica/métodos , Magnoliopsida/genética , Evolução Molecular , Filogenia
7.
Plant J ; 107(4): 1003-1015, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34077584

RESUMO

An analysis of over 10 000 plant genome sizes (GSs) indicates that most species have smaller genomes than expected given the incidence of polyploidy in their ancestries, suggesting selection for genome downsizing. However, comparing ancestral GS with the incidence of ancestral polyploidy suggests that the rate of DNA loss following polyploidy is likely to have been very low (4-70 Mb/million years, 4-482 bp/generation). This poses a problem. How might such small DNA losses be visible to selection, overcome the power of genetic drift and drive genome downsizing? Here we explore that problem, focussing on the role that double-strand break (DSB) repair pathways (non-homologous end joining and homologous recombination) may have played. We also explore two hypotheses that could explain how selection might favour genome downsizing following polyploidy: to reduce (i) nitrogen (N) and phosphate (P) costs associated with nucleic acid synthesis in the nucleus and the transcriptome and (ii) the impact of scaling effects of GS on cell size, which influences CO2 uptake and water loss. We explore the hypothesis that losses of DNA must be fastest in early polyploid generations. Alternatively, if DNA loss is a more continuous process over evolutionary time, then we propose it is a byproduct of selection elsewhere, such as limiting the damaging activity of repetitive DNA. If so, then the impact of GS on photosynthesis, water use efficiency and/or nutrient costs at the nucleus level may be emergent properties, which have advantages, but not ones that could have been selected for over generational timescales.


Assuntos
Tamanho do Genoma , Genoma de Planta , Magnoliopsida/genética , Poliploidia , Seleção Genética , Reparo do DNA por Junção de Extremidades , Recombinação Homóloga , Fotossíntese
8.
New Phytol ; 236(2): 433-446, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35717562

RESUMO

Genome size varies 2400-fold across plants, influencing their evolution through changes in cell size and cell division rates which impact plants' environmental stress tolerance. Repetitive element expansion explains much genome size diversity, and the processes structuring repeat 'communities' are analogous to those structuring ecological communities. However, which environmental stressors influence repeat community dynamics has not yet been examined from an ecological perspective. We measured genome size and leveraged climatic data for 91% of genera within the ecologically diverse palm family (Arecaceae). We then generated genomic repeat profiles for 141 palm species, and analysed repeats using phylogenetically informed linear models to explore relationships between repeat dynamics and environmental factors. We show that palm genome size and repeat 'community' composition are best explained by aridity. Specifically, Ty3-gypsy and TIR elements were more abundant in palm species from wetter environments, which generally had larger genomes, suggesting amplification. By contrast, Ty1-copia and LINE elements were more abundant in drier environments. Our results suggest that water stress inhibits repeat expansion through selection on upper genome size limits. However, elements that may associate with stress-response genes (e.g. Ty1-copia) have amplified in arid-adapted palm species. Overall, we provide novel evidence of climate influencing the assembly of repeat 'communities'.


Assuntos
Arecaceae , Retroelementos , Arecaceae/genética , Evolução Molecular , Tamanho do Genoma , Genoma de Planta , Filogenia , Análise de Sequência de DNA
9.
New Phytol ; 236(6): 2091-2102, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36110049

RESUMO

Grassland ecosystems cover c. 40% of global land area and contain c. 40% of soil organic carbon. Understanding the effects of adding nutrients to grasslands is essential because they provide much of our food, support diverse ecosystem services and harbor rich biodiversity. Using the meadow steppe (grassland) study site of Inner Mongolia, we manipulated seven key nutrients and a cocktail of micronutrients to examine their effects on grassland biomass productivity and diversity. The results, explained in structural equation models, link two previously disparate hypotheses in grassland ecology: (1) the light asymmetry competition hypothesis and (2) the genome size-nutrient interaction hypothesis. We show that aboveground net primary productivity increases predominantly from species with large genome sizes with the addition of nitrogen, and nitrogen plus phosphorus. This drives an asymmetric competition for light, causing a decline in species richness mainly in species with small genome sizes. This dynamic is likely to be caused by the nutrient demands of the nucleus and/or the scaling effects of nuclear size on cell size which impact water use efficiency. The model will help inform the best management approaches to reverse the rapid and unprecedented degradation of grasslands globally.


Assuntos
Ecossistema , Pradaria , Solo/química , Tamanho do Genoma , Carbono , Plantas/metabolismo , Nitrogênio/metabolismo , Nutrientes , Genoma de Planta
10.
Br J Anaesth ; 128(2): e180-e189, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34753594

RESUMO

BACKGROUND: Preparatory, written plans for mass casualty incidents are designed to help hospitals deliver an effective response. However, addressing the frequently observed mismatch between planning and delivery of effective responses to mass casualty incidents is a key challenge. We aimed to use simulation-based iterative learning to bridge this gap. METHODS: We used Normalisation Process Theory as the framework for iterative learning from mass casualty incident simulations. Five small-scale 'focused response' simulations generated learning points that were fed into two large-scale whole-hospital response simulations. Debrief notes were used to improve the written plans iteratively. Anonymised individual online staff surveys tracked learning. The primary outcome was system safety and latent errors identified from group debriefs. The secondary outcomes were the proportion of completed surveys, confirmation of reporting location, and respective roles for mass casualty incidents. RESULTS: Seven simulation exercises involving more than 700 staff and multidisciplinary responses were completed with debriefs. Usual emergency care was not affected by simulations. Each simulation identified latent errors and system safety issues, including overly complex processes, utilisation of space, and the need for clarifying roles. After the second whole hospital simulation, participants were more likely to return completed surveys (odds ratio=2.7; 95% confidence interval [CI], 1.7-4.3). Repeated exercises resulted in respondents being more likely to know where to report (odds ratio=4.3; 95% CI, 2.5-7.3) and their respective roles (odds ratio=3.7; 95% CI, 2.2-6.1) after a simulated mass casualty incident was declared. CONCLUSION: Simulation exercises are a useful tool to improve mass casualty incident plans iteratively and continuously through hospital-wide engagement of staff.


Assuntos
Atenção à Saúde/organização & administração , Planejamento em Desastres/métodos , Incidentes com Feridos em Massa , Recursos Humanos em Hospital/educação , Avaliação Educacional , Hospitais , Humanos , Aprendizagem , Treinamento por Simulação
11.
Lancet ; 396(10243): 39-49, 2020 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-32622394

RESUMO

BACKGROUND: Primary spontaneous pneumothorax occurs in otherwise healthy young patients. Optimal management is not defined and often results in prolonged hospitalisation. Data on efficacy of ambulatory options are poor. We aimed to describe the duration of hospitalisation and safety of ambulatory management compared with standard care. METHODS: In this open-label, randomised controlled trial, adults (aged 16-55 years) with symptomatic primary spontaneous pneumothorax were recruited from 24 UK hospitals during a period of 3 years. Patients were randomly assigned (1:1) to treatment with either an ambulatory device or standard guideline-based management (aspiration, standard chest tube insertion, or both). The primary outcome was total length of hospital stay including re-admission up to 30 days after randomisation. Patients with available data were included in the primary analysis and all assigned patients were included in the safety analysis. The trial was prospectively registered with the International Standard Randomised Clinical Trials Number, ISRCTN79151659. FINDINGS: Of 776 patients screened between July, 2015, and March, 2019, 236 (30%) were randomly assigned to ambulatory care (n=117) and standard care (n=119). At day 30, the median hospitalisation was significantly shorter in the 114 patients with available data who received ambulatory treatment (0 days [IQR 0-3]) than in the 113 with available data who received standard care (4 days [IQR 0-8]; p<0·0001; median difference 2 days [95% CI 1-3]). 110 (47%) of 236 patients had adverse events, including 64 (55%) of 117 patients in the ambulatory care arm and 46 (39%) of 119 in the standard care arm. All 14 serious adverse events occurred in patients who received ambulatory care, eight (57%) of which were related to the intervention, including an enlarging pneumothorax, asymptomatic pulmonary oedema, and the device malfunctioning, leaking, or dislodging. INTERPRETATION: Ambulatory management of primary spontaneous pneumothorax significantly reduced the duration of hospitalisation including re-admissions in the first 30 days, but at the expense of increased adverse events. This data suggests that primary spontaneous pneumothorax can be managed for outpatients, using ambulatory devices in those who require intervention. FUNDING: UK National Institute for Health Research.


Assuntos
Assistência Ambulatorial/estatística & dados numéricos , Tempo de Internação/estatística & dados numéricos , Readmissão do Paciente/estatística & dados numéricos , Pneumotórax/terapia , Padrão de Cuidado , Adulto , Feminino , Hospitalização , Humanos , Masculino , Reino Unido
12.
Am J Bot ; 108(8): 1388-1404, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34418070

RESUMO

PREMISE: The genetic structure of hybrid zones provides insight into the potential for gene flow to occur between plant taxa. Four closely related European orchid species (Orchis anthropophora, O. militaris, O. purpurea, and O. simia) hybridize when they co-occur. We aimed to characterize patterns of hybridization in O. militaris-O. purpurea, O. purpurea-O. simia, and O. anthropophora-O. simia hybrid zones using molecular and morphological data. METHODS: We used 11 newly isolated nuclear microsatellites to genotype 695 individuals collected from seven hybrid zones and six allopatric parental populations in France. Geometric morphometric analysis was conducted using 15 labellum landmarks to capture the main aspects of petal shape. RESULTS: Backcrossing was asymmetric toward O. militaris in multiple O. militaris-O. purpurea hybrid zones. Hybrids in O. purpurea-O. simia and O. anthropophora-O. simia hybrid zones were largely limited to F1 and F2 generations, but further admixture had occurred. These patterns were reflected in labellum geometric morphometric data, which correlated strongly with nuclear microsatellite data in all three species combinations. CONCLUSIONS: The coexistence of parental and admixed individuals in these Orchis hybrid zones implies they are likely to be tension zones being maintained by a balance between gene flow into the hybrid zone and selection acting against admixed individuals. The pattern of admixture in the three species combinations suggests intrinsic selection acting on the hybrids is weaker in more closely related taxa.


Assuntos
Orchidaceae , Fluxo Gênico , Genótipo , Hibridização Genética , Repetições de Microssatélites/genética , Orchidaceae/genética
13.
BMC Plant Biol ; 19(1): 162, 2019 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-31029077

RESUMO

BACKGROUND: Polyploidy has played a major role in angiosperm evolution. Previous studies have examined polyploid phenotypes in comparison to their extant progenitors, but not in context of predicted progenitor phenotypes at allopolyploid origin. In addition, differences in the trends of polyploid versus diploid evolution have not been investigated. We use ancestral character-state reconstructions to estimate progenitor phenotype at allopolyploid origin to determine patterns of polyploid evolution leading to morphology of the extant species. We also compare trends in diploid versus allopolyploid evolution to determine if polyploidy modifies floral evolutionary patterns. RESULTS: Predicting the ancestral phenotype of a nascent allopolyploid from reconstructions of diploid phenotypes at the time of polyploid formation generates different phenotype predictions than when extant diploid phenotypes are used, the outcome of which can alter conclusions about polyploid evolution; however, most analyses yield the same results. Using ancestral reconstructions of diploid floral phenotypes indicate that young polyploids evolve shorter, wider corolla tubes, but older polyploids and diploids do not show any detectable evolutionary trends. Lability of the traits examined (floral shape, corolla tube length, and corolla tube width) differs across young and older polyploids and diploids. Corolla length is more evolutionarily labile in older polyploids and diploids. Polyploids do not display unique suites of floral characters based on both morphological and color traits, but some suites of characters may be evolving together and seem to have arisen multiple times within Nicotiana, perhaps due to the influence of pollinators. CONCLUSIONS: Young polyploids display different trends in floral evolution (shorter, wider corolla tubes, which may result in more generalist pollination) than older polyploids and diploids, suggesting that patterns of divergence are impacted by the early consequences of allopolyploidy, perhaps arising from genomic shock and/or subsequent genome stabilization associated with diploidization. Convergent evolution in floral morphology and color in Nicotiana can be consistent with pollinator preferences, suggesting that pollinators may have shaped floral evolution in Nicotiana.


Assuntos
Evolução Biológica , Flores/genética , Poliploidia , Solanaceae/genética , Bases de Dados Genéticas , Diploide , Flores/anatomia & histologia , Fenótipo , Filogenia , Solanaceae/anatomia & histologia
14.
Proc Biol Sci ; 286(1899): 20182619, 2019 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-30890100

RESUMO

Angiosperm genome sizes (GS) vary ca 2400-fold. Recent research has shown that GS influences plant abundance, and plant competition. There are also tantalizing reports that herbivores may select plants as food dependent on their GS. To test the hypothesis that GS plays a role in shaping plant communities under herbivore pressure, we exploit a grassland experiment that has experimentally excluded herbivores and applied nutrient over 8 years. Using phylogenetically informed statistical models and path analyses, we show that under rabbit grazing, plant species with small GS generated the most biomass. By contrast, on mollusc and insect-grazed plots, it was the plant species with larger GS that increased in biomass. GS was also shown to influence plant community properties (e.g. competitive strategy, total biomass) although the impact varied between different herbivore guilds (i.e. rabbits versus invertebrates) and nutrient inputs. Overall, we demonstrate that GS plays a role in influencing plant-herbivore interactions, and suggest potential reasons for this response, which include the impact of GS on a plant's response to different herbivore guilds, and on a plant's nutrient quality. The inclusion of GS in ecological models has the potential to expand our understanding of plant productivity and community ecology under nutrient and herbivore stress.


Assuntos
Tamanho do Genoma , Genoma de Planta , Pradaria , Herbivoria , Magnoliopsida/fisiologia , Nutrientes/análise , Animais , Inglaterra , Gastrópodes/fisiologia , Insetos/fisiologia , Magnoliopsida/genética , Coelhos/fisiologia
15.
New Phytol ; 221(3): 1619-1633, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30220091

RESUMO

The genomic shock hypothesis suggests that allopolyploidy is associated with genome changes driven by transposable elements, as a response to imbalances between parental insertion loads. To explore this hypothesis, we compared three allotetraploids, Nicotiana arentsii, N. rustica and N. tabacum, which arose over comparable time frames from hybridisation between increasingly divergent diploid species. We used sequence-specific amplification polymorphism (SSAP) to compare the dynamics of six transposable elements in these allopolyploids, their diploid progenitors and in corresponding synthetic hybrids. We show that element-specific dynamics in young Nicotiana allopolyploids reflect their dynamics in diploid progenitors. Transposable element mobilisation is not concomitant with immediate genome merger, but occurs within the first generations of allopolyploid formation. In natural allopolyploids, such mobilisations correlate with imbalances in the repeat profile of the parental species, which increases with their genetic divergence. Other restructuring leading to locus loss is immediate, nonrandom and targeted at specific subgenomes, independently of cross orientation. The correlation between transposable element mobilisation in allopolyploids and quantitative imbalances in parental transposable element loads supports the genome shock hypothesis proposed by McClintock.


Assuntos
Elementos de DNA Transponíveis/genética , Hibridização Genética , Nicotiana/genética , Poliploidia , Sequência de Bases , Loci Gênicos , Variação Genética , Filogenia
16.
Ann Bot ; 123(5): 767-781, 2019 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-30265284

RESUMO

INTRODUCTION: Gnetophytes, comprising the genera Ephedra, Gnetum and Welwitschia, are an understudied, enigmatic lineage of gymnosperms with a controversial phylogenetic relationship to other seed plants. Here we examined the organization of ribosomal DNA (rDNA) across representative species. METHODS: We applied high-throughput sequencing approaches to isolate and reconstruct rDNA units and to determine their intragenomic homogeneity. In addition, fluorescent in situ hybridization and Southern blot hybridization techniques were used to reveal the chromosome and genomic organization of rDNA. KEY RESULTS: The 5S and 35S rRNA genes were separate (S-type) in Gnetum montanum, Gnetum gnemon and Welwitschia mirabilis and linked (L-type) in Ephedra altissima. There was considerable variability in 5S rDNA abundance, ranging from as few as ~4000 (W. mirabilis) to >100 000 (G. montanum) copies. A similar large variation was also observed in 5S rDNA locus numbers (two to 16 sites per diploid cell). 5S rRNA pseudogenes were interspersed between functional genes forming a single unit in E. altissima and G. montanum. Their copy number was comparable or even higher than that of functional 5S rRNA genes. In E. altissima internal transcribed spacers of 35S rDNA were long and intrinsically repetitive while in G. montanum and W. mirabilis they were short without the subrepeats. CONCLUSIONS: Gnetophytes are distinct from other gymnosperms and angiosperms as they display surprisingly large variability in rDNA organization and rDNA copy and locus numbers between genera, with no relationship between copy numbers and genome sizes apparent. Concerted evolution of 5S rDNA units seems to have led to the amplification of 5S pseudogenes in both G. montanum and E. altissima. Evolutionary patterns of rDNA show both gymnosperm and angiosperm features underlining the diversity of the group.


Assuntos
Cycadopsida , Variações do Número de Cópias de DNA , DNA Ribossômico , Evolução Molecular , Hibridização in Situ Fluorescente , Filogenia
17.
Plant J ; 89(5): 1020-1030, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27943584

RESUMO

The online resource http://www.plantrdnadatabase.com/ stores information on the number, chromosomal locations and structure of the 5S and 18S-5.8S-26S (35S) ribosomal DNAs (rDNA) in plants. This resource was exploited to study relationships between rDNA locus number, distribution, the occurrence of linked (L-type) and separated (S-type) 5S and 35S rDNA units, chromosome number, genome size and ploidy level. The analyses presented summarise current knowledge on rDNA locus numbers and distribution in plants. We analysed 2949 karyotypes, from 1791 species and 86 plant families, and performed ancestral character state reconstructions. The ancestral karyotype (2n = 16) has two terminal 35S sites and two interstitial 5S sites, while the median (2n = 24) presents four terminal 35S sites and three interstitial 5S sites. Whilst 86.57% of karyotypes show S-type organisation (ancestral condition), the L-type arrangement has arisen independently several times during plant evolution. A non-terminal position of 35S rDNA was found in about 25% of single-locus karyotypes, suggesting that terminal locations are not essential for functionality and expression. Single-locus karyotypes are very common, even in polyploids. In this regard, polyploidy is followed by subsequent locus loss. This results in a decrease in locus number per monoploid genome, forming part of the diploidisation process returning polyploids to a diploid-like state over time.


Assuntos
DNA de Plantas/genética , DNA Ribossômico/genética , Embriófitas/genética , Genes de RNAr/genética , Plantas/genética , Cromossomos de Plantas/genética , Bases de Dados Genéticas , Cariótipo , Filogenia , RNA Ribossômico 18S/genética , RNA Ribossômico 5S/genética
18.
BMC Genomics ; 19(1): 578, 2018 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-30068293

RESUMO

BACKGROUND: Satellite DNA is a rapidly diverging, largely repetitive DNA component of many eukaryotic genomes. Here we analyse the evolutionary dynamics of a satellite DNA repeat in the genomes of a group of Asian subtropical lady slipper orchids (Paphiopedilum subgenus Parvisepalum and representative species in the other subgenera/sections across the genus). A new satellite repeat in Paphiopedilum subgenus Parvisepalum, SatA, was identified and characterized using the RepeatExplorer pipeline in HiSeq Illumina reads from P. armeniacum (2n = 26). Reconstructed monomers were used to design a satellite-specific fluorescent in situ hybridization (FISH) probe. The data were also analysed within a phylogenetic framework built using the internal transcribed spacer (ITS) sequences of 45S nuclear ribosomal DNA. RESULTS: SatA comprises c. 14.5% of the P. armeniacum genome and is specific to subgenus Parvisepalum. It is composed of four primary monomers that range from 230 to 359 bp and contains multiple inverted repeat regions with hairpin-loop motifs. A new karyotype of P. vietnamense (2n = 28) is presented and shows that the chromosome number in subgenus Parvisepalum is not conserved at 2n = 26, as previously reported. The physical locations of SatA sequences were visualised on the chromosomes of all seven Paphiopedilum species of subgenus Parvisepalum (2n = 26-28), together with the 5S and 45S rDNA loci using FISH. The SatA repeats were predominantly localisedin the centromeric, peri-centromeric and sub-telocentric chromosome regions, but the exact distribution pattern was species-specific. CONCLUSIONS: We conclude that the newly discovered, highly abundant and rapidly evolving satellite sequence SatA is specific to Paphiopedilum subgenus Parvisepalum. SatA and rDNA chromosomal distributions are characteristic of species, and comparisons between species reveal that the distribution patterns generate a strong phylogenetic signal. We also conclude that the ancestral chromosome number of subgenus Parvisepalum and indeed of all Paphiopedilum could be either 2n = 26 or 28, if P. vietnamense is sister to all species in the subgenus as suggested by the ITS data.


Assuntos
DNA Satélite/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Hibridização in Situ Fluorescente/métodos , Orchidaceae/genética , Análise de Sequência de DNA/métodos , Mapeamento Cromossômico , DNA de Plantas/genética , DNA Ribossômico/genética , Evolução Molecular , Filogenia , RNA Ribossômico/genética , Especificidade da Espécie
20.
Ann Bot ; 122(1): 133-150, 2018 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-29672665

RESUMO

Background and Aims: Recent tissue-level observations made indirectly via flow cytometry suggest that endoreplication (duplication of the nuclear genome within the nuclear envelope in the absence of subsequent cell division) is widespread within the plant kingdom. Here, we also directly observe ploidy variation among cells within individual petals, relating size of nucleus to cell micromorphology and (more speculatively) to function. Methods: We compared the labella (specialized pollinator-attracting petals) of two European orchid genera: Dactylorhiza has a known predisposition to organismal polyploidy, whereas Ophrys exhibits exceptionally complex epidermal patterning that aids pseudocopulatory pollination. Confocal microscopy using multiple staining techniques allowed us to observe directly both the sizes and the internal structures of individual nuclei across each labellum, while flow cytometry was used to test for progressively partial endoreplication. Key Results: In Dactylorhiza, endoreplication was comparatively infrequent, reached only low levels, and appeared randomly located across the labellum, whereas in Ophrys endoreplication was commonplace, being most frequent in large peripheral trichomes. Endoreplicated nuclei reflected both endomitosis and endocycling, the latter reaching the third round of genome doubling (16C) to generate polytene nuclei. All Ophrys individuals studied exhibited progressively partial endoreplication. Conclusions: Comparison of the two genera failed to demonstrate the hypothesized pattern of frequent polyploid speciation in genera showing extensive endoreplication. Endoreplication in Ophrys appears more strongly positively correlated with cell size/complexity than with cell location or secretory role. Epigenetic control of gene overexpression by localized induction of endoreplication within individual plant organs may represent a significant component of a plant's developmental programme, contributing substantially to organ plasticity.


Assuntos
Endorreduplicação , Genoma de Planta/genética , Orchidaceae/genética , Ploidias , Evolução Biológica , Diploide , Genótipo , Microscopia Confocal , Orchidaceae/ultraestrutura , Filogenia , Polinização , Poliploidia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA