Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Nature ; 616(7958): 702-706, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37100942

RESUMO

Solids exposed to intense electric fields release electrons through tunnelling. This fundamental quantum process lies at the heart of various applications, ranging from high brightness electron sources in d.c. operation1,2 to petahertz vacuum electronics in laser-driven operation3-8. In the latter process, the electron wavepacket undergoes semiclassical dynamics9,10 in the strong oscillating laser field, similar to strong-field and attosecond physics in the gas phase11,12. There, the subcycle electron dynamics has been determined with a stunning precision of tens of attoseconds13-15, but at solids the quantum dynamics including the emission time window has so far not been measured. Here we show that two-colour modulation spectroscopy of backscattering electrons16 uncovers the suboptical-cycle strong-field emission dynamics from nanostructures, with attosecond precision. In our experiment, photoelectron spectra of electrons emitted from a sharp metallic tip are measured as function of the relative phase between the two colours. Projecting the solution of the time-dependent Schrödinger equation onto classical trajectories relates phase-dependent signatures in the spectra to the emission dynamics and yields an emission duration of 710 ± 30 attoseconds by matching the quantum model to the experiment. Our results open the door to the quantitative timing and precise active control of strong-field photoemission from solid state and other systems and have direct ramifications for diverse fields such as ultrafast electron sources17, quantum degeneracy studies and sub-Poissonian electron beams18-21, nanoplasmonics22 and petahertz electronics23.

2.
Proc Natl Acad Sci U S A ; 120(25): e2220132120, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37307476

RESUMO

Understanding and predicting the outcome of the interaction of light with DNA has a significant impact on the study of DNA repair and radiotherapy. We report on a combination of femtosecond pulsed laser microirradiation at different wavelengths, quantitative imaging, and numerical modeling that yields a comprehensive picture of photon-mediated and free-electron-mediated DNA damage pathways in live cells. Laser irradiation was performed under highly standardized conditions at four wavelengths between 515 nm and 1,030 nm, enabling to study two-photon photochemical and free-electron-mediated DNA damage in situ. We quantitatively assessed cyclobutane pyrimidine dimer (CPD) and γH2AX-specific immunofluorescence signals to calibrate the damage threshold dose at these wavelengths and performed a comparative analysis of the recruitment of DNA repair factors xeroderma pigmentosum complementation group C (XPC) and Nijmegen breakage syndrome 1 (Nbs1). Our results show that two-photon-induced photochemical CPD generation dominates at 515 nm, while electron-mediated damage dominates at wavelengths ≥620 nm. The recruitment analysis revealed a cross talk between nucleotide excision and homologous recombination DNA repair pathways at 515 nm. Numerical simulations predicted electron densities and electron energy spectra, which govern the yield functions of a variety of direct electron-mediated DNA damage pathways and of indirect damage by •OH radicals resulting from laser and electron interactions with water. Combining these data with information on free electron-DNA interactions gained in artificial systems, we provide a conceptual framework for the interpretation of the wavelength dependence of laser-induced DNA damage that may guide the selection of irradiation parameters in studies and applications that require the selective induction of DNA lesions.


Assuntos
Dano ao DNA , Elétrons , Dímeros de Pirimidina , Reparo do DNA , Lasers
3.
Nano Lett ; 23(21): 9753-9759, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37871158

RESUMO

Spectral diffusion (SD) represents a substantial obstacle toward implementation of solid-state quantum emitters as a source of indistinguishable photons. By performing high-resolution emission spectroscopy for individual colloidal quantum dots at cryogenic temperatures, we prove the causal link between the quantum-confined Stark effect and SD. Statistically analyzing the wavelength of emitted photons, we show that increasing the sensitivity of the transition energy to an applied electric field results in amplified spectral fluctuations. This relation is quantitatively fit to a straightforward model, indicating the presence of a stochastic electric field on a microscopic scale, whose standard deviation is 9 kV/cm, on average. The current method will enable the study of SD in multiple types of quantum emitters such as solid-state defects or organic lead halide perovskite quantum dots, for which spectral instability is a critical barrier for applications in quantum sensing.

4.
Nano Lett ; 23(20): 9295-9302, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37820262

RESUMO

Femtosecond (fs) time-resolved magneto-optics is applied to investigate laser-excited ultrafast dynamics of one-dimensional nickel gratings on fused silica and silicon substrates for a wide range of periodicities Λ = 400-1500 nm. Multiple surface acoustic modes with frequencies up to a few tens of GHz are generated. Nanoscale acoustic wavelengths Λ/n have been identified as nth-spatial harmonics of Rayleigh surface acoustic wave (SAW) and surface skimming longitudinal wave (SSLW), with acoustic frequencies and lifetimes being in agreement with theoretical calculations. Resonant magnetoelastic excitation of the ferromagnetic resonance (FMR) by SAW's third spatial harmonic, and, most interestingly fingerprints of the parametric resonance at 1/2 SAW frequency have been observed. Numerical solutions of Landau-Lifshitz-Gilbert (LLG) equation magnetoelastically driven by complex polychromatic acoustic fields quantitatively reproduce all resonances at once. Thus, our results provide a solid experimental and theoretical base for a quantitative understanding of ultrafast fs-laser-driven magnetoacoustics and tailoring the magnetic-grating-based metasurfaces at the nanoscale.

5.
Opt Lett ; 47(14): 3552-3555, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35838728

RESUMO

A single-cycle light source in the near infrared is demonstrated enabling sensitive applications of ultrafast optical field control of electronic transport. The compact Er:fiber system generates passively phase-locked pulses with broadband spectra covering 150 THz to 350 THz at a duration of 4.2 fs and 40 MHz repetition rate. A second output arm is equipped with an electro-optic modulator (EOM) that switches the arrival time of the pulses by 700 ps at arbitrary frequencies up to 20 MHz, enabling timing modulation of the pump pulse without changing the average intensity. As a benchmark demonstration, we investigate the carrier relaxation dynamics in low-temperature-grown InGaAs (LT-InGaAs) using quantum interference currents (QuICs).

6.
Opt Express ; 29(21): 33632-33641, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34809172

RESUMO

Moth-eye structures are patterned onto gallium selenide surfaces with sub-micrometer precision. In this way, Fresnel reflection losses are suppressed to below one percent within an ultrabroad optical bandwidth from 15 to 65 THz. We tune the geometry by rigorous coupled-wave analysis. Subsequently, ablation with a Ga+ ion beam serves to write optimized structures in areas covering 30 by 30 µm. The benefits are demonstrated via optical rectification of femtosecond laser pulses under tight focusing, resulting in emission of phase-stable transients in the mid-infrared. We analyze the performance of antireflection coating directly in the time domain by ultrabroadband electro-optic sampling.

7.
Phys Rev Lett ; 127(10): 107401, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34533346

RESUMO

We compare the ultrafast dynamics of the spin reorientation transition in the orthoferrite Sm_{0.7}Er_{0.3}FeO_{3} following two different pumping mechanisms. Intense few-cycle pulses in the midinfrared selectively excite either the f-f electronic transition of Sm^{3+} or optical phonons. With phonon pumping, a finite time delay exists for the spin reorientation, reflecting the energy transfer between the lattice and 4f system. In contrast, an instantaneous response is found for resonant f-f excitation. This suggests that 4f electronic pumping can directly alter the magnetic anisotropy due to the modification of 4f-3d exchange at femtosecond timescales, without involving lattice thermalization.

8.
Opt Lett ; 45(17): 4714-4717, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32870839

RESUMO

The nonlinear transformation of fluctuations by frequency broadening is found to produce strong anti-correlations in the spectral output. This effect is investigated by dispersive Fourier transform measurements. We exploit the anti-correlations in order to cancel the intensity noise in a subsequent sum-frequency mixing step. This principle allows for the generation of tunable visible pulses by cascaded nonlinear mixing whilst maintaining the same intensity noise performance as the input pulses. In addition, we demonstrate that the power fluctuations occurring in the process of passive stabilization of the carrier-envelope phase locking via difference frequency generation may be cancelled by an analogous strategy.

9.
Faraday Discuss ; 214: 147-157, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30834916

RESUMO

The dynamics of ultrafast electron currents triggered by femtosecond laser pulse irradiation of narrow gaps in a plasmonic dimer is studied using quantum mechanical Time-Dependent Density Functional Theory (TDDFT). The electrons are injected into the gap due to the optical field emission from the surfaces of the metal nanoparticles across the junction. Further evolution of the electron currents in the gap is governed by the locally enhanced electric fields. The combination of TDDFT and classical modelling of the electron trajectories allows us to study the quiver motion of the electrons in the gap region as a function of the Carrier Envelope Phase (CEP) of the incident pulse. In particular, we demonstrate the role of the quiver motion in establishing the CEP-sensitive net electric transport between nanoparticles.

10.
Opt Lett ; 43(12): 2877-2880, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29905713

RESUMO

We present a three-color femtosecond Er/Yb:fiber laser enabling highly specific and standardized nonlinear optical manipulation of live cells. The system simultaneously provides bandwidth-limited 80-fs pulses with identical intensity envelope centered at wavelengths of 515, 775, and 1035 nm in the focus of a confocal microscope. We achieve this goal by combining high-order dispersion control via, for example, chirped fiber Bragg gratings with proper bandwidth management in each nonlinear conversion step. Wavelength-selective and noninterfering induction of deoxyribonucleic acid (DNA) photoproducts and DNA strand breaks, as well as fluorescence photoactivation of a photoactivatable green fluorescent protein (PA-GFP)-histone fusion protein, are demonstrated. The capability to introduce different types of DNA lesions and perform photoswitching experiments in a selective manner is essential for quantitative studies on DNA repair and chromatin dynamics.


Assuntos
Cromatina/química , DNA/química , Tecnologia de Fibra Óptica/métodos , Lasers de Estado Sólido , Quebras de DNA de Cadeia Dupla , Desenho de Equipamento , Células HeLa , Humanos
11.
Opt Express ; 25(3): 2594-2607, 2017 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-29519103

RESUMO

In this study, we numerically and experimentally investigate application of birefringent filters (BRFs) as frequency selective elements in multicolor lasers. A BRF plate made out of crystalline quartz with an arbitrarily oriented optical axis has been explored. Simulation results have shown that compared to regular BRFs where the optical axis lies in the plane of the plates surface, a BRF with an optical axis pointing out of its surface enables design flexibility in filter parameters, providing access to a wider set of free spectral range and bandwidth values. As a result, multicolor operation could be obtained in many wavelength pairs using a single BRF plate. In the experiments a 3-mm thick quartz BRF with an optical axis 45° to the surface plane has been used. With Cr:Nd:GSGG as a laser medium two-color and three-color cw laser operation has been demonstrated in 11 and 3 different transition combinations, respectively. Moreover, two-color laser operation has been demonstrated in 10 different wavelength pairs in Cr:LiSAF. To our knowledge, this study is the first detailed investigation and experimental demonstration of BRFs with tilted optical axis for multicolor operation of solid-state lasers. Compared to other methods, BRFs enable a rich selection of transition pairs and also the ratio of the power in each line could be regulated by fine adjustment of the rotation angle. Implementation of tilted-axis BRFs should boost development of efficient and low-cost multicolor lasers in other gain media as well.

12.
Opt Lett ; 42(10): 2050-2053, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28504746

RESUMO

Recent demonstrations of passively phase-locked fiber-based combs motivate broadband characterization of the noise associated with the stabilized carrier-envelope offset frequency. In our study, we analyze the phase noise of a 100 MHz Er:fiber system in a wide range spanning from microhertz to the Nyquist frequency. An interferometric detection method enables analysis of the high-frequency output of an f-to-2f interferometer. The dominant contribution of a broadband white noise floor at high frequencies attests quantum-limited performance. An out-of-loop measurement of the carrier-envelope phase reveals its jitter to be as low as 250 mrad when integrated over 12 orders of magnitude of the radio-frequency spectrum.

13.
Opt Lett ; 42(14): 2687-2690, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28708144

RESUMO

We experimentally demonstrate tunable, phase-matched difference frequency generation covering the spectral region below 15 THz using 4H-SiC as a nonlinear crystal. This material combines a non-centrosymmetric lattice and strong birefringence with broadband transparency at low optical frequencies. Thorough refractive index measurements in the terahertz spectral range allow us to calculate phase-matching conditions for any near-infrared pump laser source. 4H-SiC is also exploited as a detector crystal for electro-optic sampling. The results allow us to estimate the effective second-order nonlinear coefficient.

14.
Nano Lett ; 16(9): 5861-5, 2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27550902

RESUMO

The photoluminescence emission by mesoscopic condensed matter is ultimately dictated by the fine-structure splitting of the fundamental exciton into optically allowed and dipole-forbidden states. In epitaxially grown semiconductor quantum dots, nonradiative equilibration between the fine-structure levels is mediated by bulk acoustic phonons, resulting in asymmetric spectral broadening of the excitonic luminescence. In isolated colloidal quantum dots, spatial confinement of the vibrational motion is expected to give rise to an interplay between the quantized electronic and phononic degrees of freedom. In most cases, however, zero-dimensional colloidal nanocrystals are strongly coupled to the substrate such that the charge relaxation processes are still effectively governed by the bulk properties. Here we show that encapsulation of single colloidal CdSe/CdS nanocrystals into individual organic polymer shells allows for systematic vibrational decoupling of the semiconductor nanospheres from the surroundings. In contrast to epitaxially grown quantum dots, simultaneous quantization of both electronic and vibrational degrees of freedom results in a series of strong and narrow acoustic phonon sidebands observed in the photoluminescence. Furthermore, an individual analysis of more than 200 compound particles reveals that enhancement or suppression of the radiative properties of the fundamental exciton is controlled by the interaction between fine-structure states via the discrete vibrational modes. For the first time, pronounced resonances in the scattering rate between the fine-structure states are directly observed, in good agreement with a quantum mechanical model. The unambiguous assignment of mediating acoustic modes to the observed scattering resonances complements the experimental findings. Thus, our results form an attractive basis for future studies on subterahertz quantum opto-mechanics and efficient laser cooling at the nanoscale.

15.
Opt Lett ; 41(2): 246-9, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26766685

RESUMO

A combination of Er/Yb:fiber and Yb:thin-disk technology produces 615 fs pulses at 1030 nm with an average output power of 72 W. The regenerative amplifier allows variation of the repetition rate between 3 and 5 kHz with pulse energies from 13 to 17 mJ. A broadband and intense seed provided by the compact and versatile fiber front-end minimizes gain narrowing. The resulting sub-ps performance is ideal for nonlinear frequency conversion and pulse compression. Operating in the upper branch of a bifurcated pulse train, the system exhibits exceptional noise performance and stability.

16.
Opt Lett ; 41(16): 3731-4, 2016 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-27519075

RESUMO

A highly stable setup for stimulated Raman scattering (SRS) microscopy is presented. It is based on a two-branch femtosecond Er:fiber laser operating at a 40 MHz repetition rate. One of the outputs is directly modulated at the Nyquist frequency with an integrated electro-optic modulator (EOM). This compact source combines a jitter-free pulse synchronization with a broad tunability and allows for shot-noise limited SRS detection. The performance of the SRS microscope is illustrated with measurements on samples from material science and cell biology.

17.
Phys Rev Lett ; 117(4): 047401, 2016 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-27494498

RESUMO

Impulsive interband excitation with femtosecond near-infrared pulses establishes a plasma response in intrinsic germanium structures fabricated on a silicon substrate. This direct approach activates the plasmonic resonance of the Ge structures and enables their use as optical antennas up to the mid-infrared spectral range. The optical switching lasts for hundreds of picoseconds until charge recombination redshifts the plasma frequency. The full behavior of the structures is modeled by the electrodynamic response established by an electron-hole plasma in a regular array of antennas.

18.
Opt Express ; 23(7): 8901-9, 2015 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-25968727

RESUMO

We demonstrate continuous-wave (cw), cw frequency-doubled, cw mode-locked and Q-switched mode-locked operation of multimode diode-pumped Cr:LiCAF lasers with record average powers. Up to 2.54 W of cw output is obtained around 805 nm at an absorbed pump power of 5.5 W. Using intracavity frequency doubling with a BBO crystal, 0.9 W are generated around 402 nm, corresponding to an optical-to-optical conversion efficiency of 12%. With an intracavity birefringent tuning plate, the fundamental and frequency-doubled laser output is tuned continuously in a broad wavelength range from 745 nm to 885 nm and from 375 to 440 nm, respectively. A saturable Bragg reflector is used to initiate and sustain mode locking. In the cw mode-locked regime, the Cr:LiCAF laser produces 105-fs long pulses near 810 nm with an average power of 0.75 W. The repetition rate is 96.4 MHz, resulting in pulse energies of 7.7 nJ and peak powers of 65 kW. In Q-switched mode-locked operation, pulses with energies above 150 nJ are generated.

19.
Opt Lett ; 40(5): 823-6, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25723442

RESUMO

A high-power femtosecond Yb:fiber amplifier operating with exceptional noise performance and long-term stability is demonstrated. It generates a 10-MHz train of 145-fs pulses at 1.03 µm with peak powers above 36 MW. The system features a relative amplitude noise of 1.5·10⁻6 Hz(-1/2) at 1 MHz and drifts of the 60-W average power below 0.3% over 72 hours of continuous operation. The passively phase-stable Er:fiber seed system provides ultrabroadband pulses that are synchronized at a repetition rate of 40 MHz. This combination aims at new schemes for sensitive experiments in ultrafast scientific applications.

20.
Nature ; 455(7213): 648-51, 2008 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-18833276

RESUMO

Magnetic resonance imaging and optical microscopy are key technologies in the life sciences. For microbiological studies, especially of the inner workings of single cells, optical microscopy is normally used because it easily achieves resolution close to the optical wavelength. But in conventional microscopy, diffraction limits the resolution to about half the wavelength. Recently, it was shown that this limit can be partly overcome by nonlinear imaging techniques, but there is still a barrier to reaching the molecular scale. In contrast, in magnetic resonance imaging the spatial resolution is not determined by diffraction; rather, it is limited by magnetic field sensitivity, and so can in principle go well below the optical wavelength. The sensitivity of magnetic resonance imaging has recently been improved enough to image single cells, and magnetic resonance force microscopy has succeeded in detecting single electrons and small nuclear spin ensembles. However, this technique currently requires cryogenic temperatures, which limit most potential biological applications. Alternatively, single-electron spin states can be detected optically, even at room temperature in some systems. Here we show how magneto-optical spin detection can be used to determine the location of a spin associated with a single nitrogen-vacancy centre in diamond with nanometre resolution under ambient conditions. By placing these nitrogen-vacancy spins in functionalized diamond nanocrystals, biologically specific magnetofluorescent spin markers can be produced. Significantly, we show that this nanometre-scale resolution can be achieved without any probes located closer than typical cell dimensions. Furthermore, we demonstrate the use of a single diamond spin as a scanning probe magnetometer to map nanoscale magnetic field variations. The potential impact of single-spin imaging at room temperature is far-reaching. It could lead to the capability to probe biologically relevant spins in living cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA