Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Int J Mol Sci ; 24(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37569776

RESUMO

Stabilization and reusability of enzyme transglutaminase (TGM) are important goals for the enzymatic process since immobilizing TGM plays an important role in different technologies and industries. TGM can be used in many applications. In the food industry, it plays a role as a protein-modifying enzyme, while, in biotechnology and pharmaceutical applications, it is used in mediated bioconjugation due to its extraordinary crosslinking ability. TGMs (EC 2.3.2.13) are enzymes that catalyze the formation of a covalent bond between a free amino group of protein-bound or peptide-bound lysine, which acts as an acyl acceptor, and the γ-carboxamide group of protein-bound or peptide-bound glutamine, which acts as an acyl donor. This results in the modification of proteins through either intramolecular or intermolecular crosslinking, which improves the use of the respective proteins significantly.


Assuntos
Proteínas , Transglutaminases , Transglutaminases/metabolismo , Biotecnologia , Peptídeos , Glutamina
2.
Int J Mol Sci ; 24(4)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36834596

RESUMO

Biopolymeric nanoparticles are gaining importance as nanocarriers for various biomedical applications, enabling long-term and controlled release at the target site. Since they are promising delivery systems for various therapeutic agents and offer advantageous properties such as biodegradability, biocompatibility, non-toxicity, and stability compared to various toxic metal nanoparticles, we decided to provide an overview on this topic. Therefore, the review focuses on the use of biopolymeric nanoparticles of animal, plant, algal, fungal, and bacterial origin as a sustainable material for potential use as drug delivery systems. A particular focus is on the encapsulation of many different therapeutic agents categorized as bioactive compounds, drugs, antibiotics, and other antimicrobial agents, extracts, and essential oils into protein- and polysaccharide-based nanocarriers. These show promising benefits for human health, especially for successful antimicrobial and anticancer activity. The review article, divided into protein-based and polysaccharide-based biopolymeric nanoparticles and further according to the origin of the biopolymer, enables the reader to select the appropriate biopolymeric nanoparticles more easily for the incorporation of the desired component. The latest research results from the last five years in the field of the successful production of biopolymeric nanoparticles loaded with various therapeutic agents for healthcare applications are included in this review.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Nanopartículas , Animais , Humanos , Sistemas de Liberação de Medicamentos/métodos , Biopolímeros , Preparações Farmacêuticas , Atenção à Saúde
3.
Molecules ; 28(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36770972

RESUMO

Cross-linked enzyme aggregates (CLEAs) represent an effective tool for carrier-free immobilization of enzymes. The present study promotes a successful application of functionalized magnetic nanoparticles (MNPs) for stabilization of cellulase CLEAs. Catalytically active CLEAs and magnetic cross-linked enzyme aggregates (mCLEAs) of cellulase from Trichoderma reesei were prepared using glutaraldehyde (GA) as a cross-linking agent and the catalytic activity and stability of the CLEAs/mCLEAs were investigated. The influence of precipitation agents, cross-linker concentration, concentration of enzyme, addition of bovine serum albumin (BSA), and addition of sodium cyanoborohydride (NaBH3CN) on expressed activity and immobilization yield of CLEAs/mCLEAs was studied. Particularly, reducing the unsaturated Schiff's base to form irreversible linkages is important and improved the activity of CLEAs (86%) and mCLEAs (91%). For increased applicability of CLEAs/mCLEAs, we enhanced the activity and stability at mild biochemical process conditions. The reusability after 10 cycles of both CLEAs and mCLEAs was investigated, which retained 72% and 65% of the initial activity, respectively. The thermal stability of CLEAs and mCLEAs in comparison with the non-immobilized enzyme was obtained at 30 °C (145.65% and 188.7%, respectively) and 50 °C (185.1% and 141.4%, respectively). Kinetic parameters were determined for CLEAs and mCLEAs, and the KM constant was found at 0.055 ± 0.0102 mM and 0.037 ± 0.0012 mM, respectively. The maximum velocity rate (Vmax) was calculated as 1.12 ± 0.0012 µmol/min for CLEA and 1.17 ± 0.0023 µmol/min for mCLEA. Structural characterization was studied using XRD, SEM, and FT-IR. Catalytical properties of immobilized enzyme were improved with the addition of reducent NaBH3CN by enhancing the activity of CLEAs and with addition of functionalized aminosilane MNPs by enhancing the activity of mCLEAs.


Assuntos
Celulases , Enzimas Imobilizadas , Estabilidade Enzimática , Reagentes de Ligações Cruzadas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Enzimas Imobilizadas/química , Temperatura , Fenômenos Magnéticos
4.
Int J Mol Sci ; 22(17)2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34502452

RESUMO

Exosomes are becoming increasingly important therapeutic biomaterials for use in a variety of therapeutic applications due to their unique characteristics, especially due to the ineffectiveness and cytotoxicity of some existing therapies and synthetic therapeutic nanocarriers. They are highly promising as carriers of drugs, genes, and other therapeutic agents that can be incorporated into their interior or onto their surface through various modification techniques to improve their targeting abilities. In addition, they are biocompatible, safe, and stable. The review focuses on different types of exosomes and methods of their preparation, including the incorporation of different kinds of cargo, especially for drug delivery purposes. In particular, their importance and effectiveness as delivery vehicles of various therapeutic agents for a variety of therapeutic applications, including different diseases and disorders such as cancer treatment, cardiovascular and neurodegenerative diseases, are emphasized. Administration routes of exosomes into the body are also included. A novelty in the article is the emphasis on global companies that are already successfully developing and testing such therapeutic biomaterials, with a focus on the most influential ones. Moreover, a comparison of the advantages and disadvantages of the various methods of exosome production is summarized for the first time.


Assuntos
Sistemas de Liberação de Medicamentos , Exossomos , Animais , Tecnologia Biomédica/tendências , Engenharia Genética , Humanos
5.
Molecules ; 26(3)2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33535536

RESUMO

As the need for non-renewable sources such as fossil fuels has increased during the last few decades, the search for sustainable and renewable alternative sources has gained growing interest. Enzymatic hydrolysis in bioethanol production presents an important step, where sugars that are fermented are obtained in the final fermentation process. In the process of enzymatic hydrolysis, more and more new effective enzymes are being researched to ensure a more cost-effective process. There are many different enzyme strategies implemented in hydrolysis protocols, where different lignocellulosic biomass, such as wood feedstocks, different agricultural wastes, and marine algae are being used as substrates for an efficient bioethanol production. This review investigates the very recent enzymatic hydrolysis pathways in bioethanol production from lignocellulosic biomass.


Assuntos
Biocombustíveis , Biomassa , Biotecnologia/métodos , Etanol/metabolismo , Lignina/química , Catálise , Fermentação , Hidrólise
6.
Molecules ; 25(24)2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348622

RESUMO

Graham flour is a form of whole wheat flour made by grinding the endosperm and is thus also the most nutritious. Generally, the enzyme polyphenol oxidase (PPO) catalyzes two different reactions in the presence of molecular oxygen: the hydroxylation of monophenols to ortho-diphenol and the oxidation of o-diphenol to o-quinone. The purpose of the work was to inactivate PPO activity to extend the shelf life of graham flour and at the same time preserve all the of its high-quality properties. The influence of supercritical CO2 (scCO2) treatment on PPO activity in graham flour was investigated. First, graham flour was exposed to scCO2 conditions, then the proteins were extracted, and in the last step the concentration of total proteins and the specific activity of the PPO enzyme were determined by spectrophotometric assay. PPO activity decreased with an increase in treatment pressure. Furthermore, the flour quality characteristics that meet all needs for wheat end-use products after scCO2 treatment have been preserved. No major changes in the structure of the granulate or shape of the flour particles were observed. A slightly reduced value of the moisture content in scCO2-treated graham flour also implies an extension of the shelf life.


Assuntos
Dióxido de Carbono/química , Catecol Oxidase/metabolismo , Farinha , Proteínas de Plantas/metabolismo , Ativação Enzimática , Oxirredução , Oxigênio/metabolismo , Triticum
7.
Molecules ; 25(24)2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33334001

RESUMO

According to many reports, phenolic compounds isolated from olive leaves have very good biological activities, especially antimicrobial. Presently, the resistance of microorganisms to antibiotics is greater than ever. Therefore, there are numerous recent papers about alternative solutions for inhibiting their influence on human health. Olive leaf is studied as an important source of antimicrobials with low cost and used in medicine. Numerous publications on involving green technologies for isolation of active compounds from olive leaves have appeared over the past few decades. The present review reports on current knowledge of the most isolated phenolic compounds from olive leaf extract as well as methods for their isolation and characterization. This paper uses recent research findings with a wide range of study models to describe the antimicrobial potential of phenolic compounds. It also describes the vast range of information about methods for determination of antimicrobial potential focusing on effects on different microbes. Additionally, it serves to highlight the role of olive leaf extract as an antioxidants and presents methods for determination of antioxidant potential. Furthermore, it provides an overview of presence of enzymes. The significance of olive leaves as industrial and agricultural waste is emphasized by means of explaining their availability, therapeutic and nutritional effects, and research conducted on this field.


Assuntos
Antioxidantes/farmacologia , Olea/química , Fenóis/farmacologia , Folhas de Planta/química , Anti-Infecciosos/farmacologia
8.
Molecules ; 25(21)2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33126621

RESUMO

This study presents an investigation of the anticancer and antimicrobial ability of a combination of ginger and cannabis extracts in different ratios (1:1, 7:3 and 3:7). Extracts were obtained using various methods (Soxhlet extractions, cold macerations, ultrasonic extractions and supercritical fluid extractions). The antioxidant activity and the presence of total phenols were measured in the extracts, and the effect of the application extracts in various concentrations (c = 50, 20, 10, 5, 1, 0.1, 0.01 mg/mL) on cells was investigated. Higher values of antioxidants were measured at the ratio where ginger was predominant, which is reflected in a higher concentration of total phenols. Depending on the polyphenol content, the extracts were most effective when prepared supercritically and ultrasonically. However, with respect to cell response, the ratio was shown to have no effect on inhibiting cancer cell division. The minimum concentration required to inhibit cancer cell growth was found to be 1 mg/mL. High-performance liquid chromatography (HPLC) analysis also confirmed the effectiveness of ultrasonic and supercritical fluid extraction, as their extracts reached higher cannabinoid contents. In both extractions, the cannabidiol (CBD) content was above 30% and the cannabidiolic acid (CBDA) content was above 45%. In the case of ultrasonic extraction, a higher quantity of cannabigerol (CBG) (5.75 ± 0.18) was detected, and in the case of supercritical fluid extraction, higher cannabichromene (CBC) (5.48 ± 0.13) content was detected, when compared to other extraction methods. The antimicrobial potential of extracts prepared with ultrasonic and supercritical extractions on three microorganisms (Staphylococcus aureus, Escherichia coli and Candida albicans) was checked. Ginger and cannabis extract show better growth inhibition of microorganisms in cannabis-dominated ratios for gram-positive bacterium S. aureus, MIC = 9.38 mg/mL, for gram-negative bacterium E. coli, MIC > 37.5 mg/mL and for the C. albicans fungus MIC = 4.69 mg/mL. This suggests guidelines for further work: a 1: 1 ratio of ginger and hemp will be chosen in a combination with supercritical and ultrasonic extraction.


Assuntos
Anti-Infecciosos/farmacologia , Antineoplásicos/farmacologia , Cannabis/química , Extratos Vegetais/farmacologia , Zingiber officinale/química , Candida albicans/efeitos dos fármacos , Candida albicans/metabolismo , Linhagem Celular Tumoral , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Humanos , Metástase Neoplásica , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/metabolismo
9.
Molecules ; 25(12)2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32604845

RESUMO

In this study the effect of growth medium strength on the minimum inhibitory concentration (MIC) of different tannins and tannin extracts against Escherichia coli was systematically investigated for the first time. Three pure compounds (vescalagin, castalagin and gallic acid) and five extracts (chestnut, quebracho, mimosa, Colistizer and tannic acid) were studied. Broth microdilution was assayed and bacteria were grown using different growth medium strengths varying from half to double the concentration recommended by the producer. MICs were determined using the iodonitrotetrazolium chloride (INT) dye or turbidity measurements. It was observed that MIC values depend on the growth medium strength. With an increase in the growth medium concentration MIC values rose roughly linearly for all samples, while their relative order remained unchanged, indicating that a direct interaction of tannins with growth medium nutrients represents the likely source of their antimicrobial activity. Understanding the effect of growth medium strength can finally yield a plausible explanation for the observed variation in MIC values reported in the scientific literature as well as provide help in planning proper applications of tannins in the livestock production.


Assuntos
Meios de Cultura/química , Escherichia coli/efeitos dos fármacos , Plantas/química , Taninos/farmacologia , Técnicas Bacteriológicas , Escherichia coli/crescimento & desenvolvimento , Ácido Gálico/química , Ácido Gálico/farmacologia , Taninos Hidrolisáveis/química , Taninos Hidrolisáveis/farmacologia , Testes de Sensibilidade Microbiana , Mimosa/química , Estrutura Molecular , Extratos Vegetais/química , Quercus/química , Taninos/química
10.
Molecules ; 24(10)2019 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-31117310

RESUMO

Chitosan-based nanomaterials have attracted significant attention in the biomedical field because of their unique biodegradable, biocompatible, non-toxic, and antimicrobial nature. Multiple perspectives of the proposed antibacterial effect and mode of action of chitosan-based nanomaterials are reviewed. Chitosan is presented as an ideal biomaterial for antimicrobial wound dressings that can either be fabricated alone in its native form or upgraded and incorporated with antibiotics, metallic antimicrobial particles, natural compounds and extracts in order to increase the antimicrobial effect. Since chitosan and its derivatives can enhance drug permeability across the blood-brain barrier, they can be also used as effective brain drug delivery carriers. Some of the recent chitosan formulations for brain uptake of various drugs are presented. The use of chitosan and its derivatives in other biomedical applications is also briefly discussed.


Assuntos
Pesquisa Biomédica , Quitosana/química , Nanoestruturas/química , Anti-Infecciosos/química , Anti-Infecciosos/uso terapêutico , Tecnologia Biomédica , Quitosana/uso terapêutico , Sistemas de Liberação de Medicamentos , Humanos , Nanoestruturas/uso terapêutico
11.
Molecules ; 24(13)2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-31269674

RESUMO

Composites of polyolefin matrices (HDPE and PP) were prepared by melt processing using two commercially available nano ZnO powders (Zinkoxyd aktiv and Zano 20). The mechanical and thermal properties, UV-Vis stability, and antibacterial activity of composites were studied. Tensile testing revealed that both nano ZnO types have no particular effect on the mechanical properties of HDPE composites, while some positive trends are observed for the PP-based composites, but only when Zano 20 was used as a nanofiller. Minimal changes in mechanical properties of composites are supported by an almost unaffected degree of crystallinity of polymer matrix. All polyolefin/ZnO composites exposed to artificial sunlight for 8-10 weeks show more pronounced color change than pure matrices. This effect is more evident for the HDPE than for the PP based composites. Color change also depends on the ZnO concentration and type; composites with Zano 20 show more intense color changes than those prepared with Zinkoxyd aktiv. Results of the antibacterial properties study show very high activity of polyolefin/ZnO composites against Staphylococcus aureus regardless of the ZnO surface modification, while antibacterial activity against Escherichia coli shows only the composites prepared with unmodified ZnO. This phenomenon is explained by different membrane structure of gram-positive (S. aureus) and gram-negative (E. coli) bacteria.


Assuntos
Química Orgânica/métodos , Polienos/química , Óxido de Zinco/química , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Nanopartículas/química , Nanopartículas/ultraestrutura , Silanos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus/efeitos dos fármacos , Ácidos Esteáricos/química , Propriedades de Superfície , Resistência à Tração , Difração de Raios X
12.
Radiol Oncol ; 49(4): 386-94, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26834526

RESUMO

BACKGROUND: Growth factors are key inducers of fibrosis but can also mediate inflammatory responses resulting in increasing pleural effusion and acute respiratory distress syndrome. The primary aim of the study was to analyse growth factors release after performing chemical and mechanical pleurodesis in the first 48 hours at the patients with malignant pleural effusion. The secondary endpoints were to evaluate the effectiveness of the both pleurodeses, symptoms release and the quality of life of patients after the treatment. PATIENTS AND METHODS: A prospective randomized study included 36 consecutive female patients with breast carcinoma and malignant pleural effusion in an intention-to-treat analysis. We treated 18 patients by means of thoracoscopic mechanical pleurodesis and 18 patients by chemical pleurodesis with talcum applied over a chest tube. We gathered the pleural fluid and serum samples in the following 48 hours under a dedicated protocol and tested them for growth factors levels. A quality of life and visual analogue pain score surveys were also performed. RESULTS: Median measured serum vascular endothelial growth factor (VEGF) level after chemical pleurodesis was 930.68 pg/ml (95% CI: 388.22-4656.65) and after mechanical pleurodesis 808.54 pg/ml. (95% CI: 463.20-1235.13) (p = 0.103). Median pleural levels of transforming growth factor (TGF) ß1 were higher after performing mechanical pleurodesis (4814.00 pg/ml [95% CI: 2726.51-7292.94]) when compared to those after performing chemical pleurodesis (1976.50 pg/ml [95% CI: 1659.82-5136.26]) (p = 0.078). We observed similar results for fibroblast growth factor (FGF) ß; the serum level was higher after mechanical pleurodesis (30.45 pg/ml [95% CI: 20.40-59.42]), compared to those after chemical pleurodesis (13.39 pg/ml [95% CI: 5.04 - 74.60]) (p = 0.076). Mechanical pleurodesis was equally effective as chemical pleurodesis in terms of hospital stay, pleural effusion re-accumulation, requiring of additional thoracentesis, median overall survival, but, it shortened the mean thoracic drainage duration (p = 0.030) and resulted in a higher symptoms release and in a better quality of life (p = 0.047). CONCLUSIONS: We recorded an increase in serum VEGF levels after chemical pleurodesis, however on the contrary, an increase in the pleural fluid level of TGFß1 and FGFß] after mechanical pleurodesis with respect to compared group. Although the differences did not reach statistical significance, VEGF, TGFß1 and FGFß remain the most interesting parameters for future research. Considering the mechanisms of growth factors action, we conclude that in our study group mechanical pleurodesis might be more efficient in terms of growth factors release, thoracic drainage duration and resulted in a higher symptoms release and in a better quality of life than chemical pleurodesis.

13.
Acta Chim Slov ; 61(1): 145-52, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24664338

RESUMO

Nanoparticles of inorganic magnetic core surrounded by layers of functional coatings are potential representatives of nanostructures for immobilization of bio-substances. Magnetic nanoparticles (MNPs) are often bound in aggregates due to a strong magnetic dipole, which has a lot of advantages, such as large surface area for binding biologically active substances. Chitosan is a polysaccharide polymer that is non-toxic, hydrophilic, biocompatible and has hydroxy and amino groups in its structure. Because of these chemical and biological properties it is a desirable bio-product for immobilization of enzymes and for binding of other biologically active substances. Magnetic micro and nanoparticles were synthesized with chitosan by three different methods; microemulsion process, suspension cross-linking technique and covalent binding of chitosan. Toxic effect of the prepared magnetic particles was determined as well and was examined on five different bacterial cultures; Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Enterococcus faecalis and Klebsiella pneumoniae. At concentrations of 10-30 mg of magnetic particles per 0.5 McFarland Standard solution of E. coli and per 400 CFU of S. aureus, P. aeruginosa, E. faecalis in K. pneumonia, no inhibition on the chosen bacterial cultures was detected.


Assuntos
Quitosana/química , Quitosana/toxicidade , Portadores de Fármacos/química , Portadores de Fármacos/toxicidade , Compostos Férricos/química , Microesferas , Nanopartículas , Bactérias/efeitos dos fármacos , Teste de Materiais
14.
Foods ; 13(4)2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38397530

RESUMO

Plant waste materials are important sources of bioactive compounds with remarkable health-promoting benefits. In particular, industrial by-products such as mango peels are sustainable sources of bioactive substances, with antioxidant, enzymatic, and antimicrobial activity. Appropriate processing is essential to obtain highly bioactive compounds for further use in generating value-added products for the food industry. The objective of the study was to investigate and compare the biological activity of compounds from fresh and dried mango peels obtained by different conventional methods and unconventional extraction methods using supercritical fluids (SFE). The highest total phenolic content (25.0 mg GAE/g DW) and the total content of eight phenolic compounds (829.92 µg/g DW) determined by LC-MS/MS were detected in dried mango peel extract obtained by the Soxhlet process (SE). SFE gave the highest content of proanthocyanidins (0.4 mg PAC/g DW). The ethanolic ultrasonic process (UAE) provided the highest antioxidant activity of the product (82.4%) using DPPH radical scavenging activity and total protein content (2.95 mg protein/g DW). Overall, the dried mango peels were richer in bioactive compounds (caffeic acid, chlorogenic acid, gallic acid, catechin, and hesperidin/neohesperidin), indicating successful preservation during air drying. Furthermore, outstanding polyphenol oxidase, superoxide dismutase (SOD), and lipase activities were detected in mango peel extracts. This is the first study in which remarkable antibacterial activities against the growth of Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive bacteria (Bacillus cereus and Staphylococcus aureus) were evaluated by determining the microbial growth inhibition rate after 12 and 24 h incubation periods for mango peel extracts obtained by different methods. Ethanolic SE and UAE extracts from dried mango peels resulted in the lowest minimum inhibitory concentrations (MIC90) for all bacterial species tested. Mango peels are remarkable waste products that could contribute to the sustainable development of exceptional products with high-added value for various applications, especially as dietary supplements.

15.
Foods ; 12(24)2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38137304

RESUMO

Green technologies using renewable and alternative sources, including supercritical carbon dioxide (sc-CO2), are becoming a priority for researchers in a variety of fields, including the control of enzyme activity which, among other applications, is extremely important in the food industry. Namely, extending shelf life of e.g., flour could be reached by tuning the present enzymes activity. In this study, the effect of different sc-CO2 conditions such as temperature (35-50 °C), pressure (200 bar and 300 bar), and exposure time (1-6 h) on the inactivation and structural changes of α-amylase, lipase, and horseradish peroxidase (POD) from white wheat flour and native enzymes was investigated. The total protein (TPC) content and residual activities of the enzymes were determined by standard spectrophotometric methods, while the changes in the secondary structures of the enzymes were determined by circular dichroism spectrometry (CD). The present work is therefore concerned for the first time with the study of the stability and structural changes of the enzyme molecules dominant in white wheat flour under sc-CO2 conditions at different pressures and temperatures. In addition, the changes in aggregation or dissociation of the enzyme molecules were investigated based on the changes in particle size distribution and ζ-potential. The results of the activity assays showed a decrease in the activity of native POD and lipase under optimal exposure conditions (6 h and 50 °C; and 1 h and 50 °C) by 22% and 16%, respectively. In contrast, no significant changes were observed in α-amylase activity. Consequently, analysis of the CD spectra of POD and lipase confirmed a significant effect on secondary structure damage (changes in α-helix, ß-sheet, and ß-turn content), whereas the secondary structure of α-amylase retained its original configuration. Moreover, the changes in particle size distribution and ζ-potential showed a significant effect of sc-CO2 treatment on the aggregation and dissociation of the selected enzymes. The results of this study confirm that sc-CO2 technology can be effectively used as an environmentally friendly technology to control the activity of major flour enzymes by altering their structures.

16.
Plants (Basel) ; 12(5)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36904061

RESUMO

The aim of this research was to identify and quantify biologically active compounds from avocado (Persea americana L.) seeds (AS) utilizing different techniques with the use of ultrasound (US), ethanol (EtOH), and supercritical carbon dioxide (scCO2) for possible applications in (bio)medicine, pharmaceutical, cosmetic, or other relevant industries. Initially, a study of the process efficiency (η) was carried out, which revealed yields in the range of 2.96-12.11 wt%. The sample obtained using scCO2 was found to be the richest in total phenols (TPC) and total proteins (PC), while the sample obtained with the use of EtOH resulted in the highest content of proanthocyanidins (PAC). Phytochemical screening of AS samples, quantified by the HPLC method, indicated the presence of 14 specific phenolic compounds. In addition, the activity of the selected enzymes (cellulase, lipase, peroxidase, polyphenol oxidase, protease, transglutaminase, and superoxide dismutase) was quantified for the first time in the samples from AS. Using DPPH radical scavenging activity, the highest antioxidant potential (67.49%) was detected in the sample obtained with EtOH. The antimicrobial activity was studied using disc diffusion method against 15 microorganisms. Additionally, for the first time, the antimicrobial effectiveness of AS extract was quantified by determination of microbial growth-inhibition rates (MGIRs) at different concentrations of AS extract against three strains of Gram-negative (Escherichia coli, Pseudomonas aeruginosa, and Pseudomonas fluorescens) bacteria, three strains of Gram-positive (Bacillus cereus, Staphylococcus aureus, and Streptococcus pyogenes) bacteria, and fungi (Candida albicans). MGIRs and minimal inhibitory concentration (MIC90) values were determined after 8 and 24 h of incubation, thus enabling the screening of antimicrobial efficacy for possible further applications of AS extracts as antimicrobial agents in (bio)medicine, pharmaceutical, cosmetic, or other industries. For example, the lowest MIC90 value was determined for B. cereus after 8 h of incubation in the case of UE and SFE extracts (70 µg/mL), indicating an outstanding result and the potential of AS extracts, as the MIC values for B. cereus have not been investigated so far.

17.
Foods ; 11(13)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35804642

RESUMO

The objectives of this study were to inactivate the enzymes α-amylase, lipase, protease, and peroxidase in flour with supercritical carbon dioxide (scCO2), and to optimize the enzymatic treatment conditions. Enzyme inactivation is important, due to the undesirability of certain flour enzymes that cause adverse reactions during storage as unpleasant rancidity of flour, and, at the same time, reduce the shelf life of flour. Therefore, crude enzymes and flour were initially exposed to scCO2 to determine the effect on specific enzyme activity under appropriate conditions. The activity of the unwanted enzymes lipase and peroxidase decreased under optimal process conditions of scCO2 exposure, lipase by 30%, and peroxidase by 12%, respectively. It was discovered that the inactivation of enzymes in wheat flour occurred, where, at the same time, this sustainable method allows the regulation of enzyme activity in the baking process. Afterwards, the effect of scCO2 on the physicochemical properties of flour, morphological changes on starch granules, and content of total lipids was studied. In scCO2-treated white wheat flour, the fat content decreased by 46.15 ± 0.5%, the grain structure was not damaged, and the bread as the final product had a lower specific surface volume. Therefore, this could be a promising technology for flour pretreatment, potentially impacting the prolonging of its shelf-life.

18.
Front Bioeng Biotechnol ; 10: 813919, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35309987

RESUMO

Immobilized enzymes have important aspects due to the fact that they possess higher stability, have the possibility to be easily removed from the reaction mixture, and are much easier to use when compared to free enzymes. In this research, the enzymes laccase, cellulase, ß-galactosidase (ß-gal), and transglutaminase (TGM) were immobilized by two different methods: crosslinked enzyme aggregates (CLEAs) and magnetic crosslinked enzyme aggregates (mCLEAs). The processes for CLEAs and mCLEAs preparation with different enzymes have been optimized, where the aim was to achieve the highest possible relative activity of the immobilized enzyme. The optimal conditions of the synthesis of CLEAs in mCLEAs are described, thus emphasizing the difference between the two types of immobilization based on different enzymes. This comparative study, which represents the synthesis of crosslinked enzyme aggregates using different enzymes, has not been performed so far. Moreover, the obtained activity of CLEAs and mCLEAs is presented, which is important for further use in different biocatalytic processes. Specifically, of a higher importance is the selection of enzymes involved in immobilization, as they belong to the three different most applicable enzymes (oxidoreductases, hydrolases, and transferases). The study confirmed that the resulting activity of the immobilized enzyme and the optimization of enzyme immobilization depended on the type of the enzyme. Moreover, the prepared CLEAs and mCLEAs were exposed to the supercritical carbon dioxide (scCO2) at different pressures to determine the effect of scCO2 on enzyme activity in immobilized form. Additionally, to demonstrate the reuse and stability of the immobilized enzyme, the stability and reusability tests of CLEAs and mCLEAs were performed. The catalytic performance of immobilized enzyme was tested, where the catalytic efficiency and long-term operational stability of mCLEAs were obviously superior to those of CLEAs. However, the higher activity observed for CLEAs compared to mCLEAs suggests a significant effect of magnetic nanoparticles in the stabilization of an enzyme crosslinked aggregate structure.

19.
Foods ; 11(23)2022 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-36496639

RESUMO

In this research, a new approach to enzyme inactivation in flour was presented by supercritical technology, considered a sustainable technology with lower energy consumption compared to other technologies that use ultra-high temperature processing. Total protein concentration and the activity of enzymes α-amylase, lipase, peroxidase, polyphenol oxidase, and protease were determined in flour pre-treated with scCO2. During the study, it was observed that the activity of enzymes such as lipase and polyphenol oxidase, was significantly reduced under certain conditions of scCO2 treatment, while the enzymes α-amylase and protease show better stability. In particular, polyphenol oxidase was effectively inactivated below the 60% of preserved activity at 200 bar and 3 h, whereas α-amylase under the same conditions retained its activity. Additionally, the moisture content of the scCO2-treated spelt flour was reduced by 5%, and the fat content was reduced by 58%, while the quality of scCO2-treated flour was maintained. In this regard, the sustainable scCO2 process could be a valuable tool for controlling the enzymatic activity of spelt flour since the use of scCO2 technology has a positive effect on the quality of flour, which was verified by the baking performance of spelt flour with the baked spelt bread as an indicator of quality.

20.
Plants (Basel) ; 11(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36365323

RESUMO

Proper processing of natural material is crucial to obtain an extract with high content of biologically active components. Dried, grinded ginger roots were extracted by ultrasonic method and supercritical extraction with CO2. The aim of the study was to determine if a mixture of the two types of extracts attained by different methods and solvents exhibits better bioavailability than each extract itself. Therefore, both extracts were analytically evaluated and then mixed in a ratio of 1:1. The supercritical extract (SCG extract) and the mixed extract (mixG extract) had high antioxidant activity (78% and 73%) and total phenols (827 mg/g ext. and 1455 mg/g ext.), which is also consistent with the levels of gingerol (303 mg/g ext. and 271 g/g ext.) and shogaol (111 mg/g ext. and 100 g/g ext.) in the extracts. In comparison to both pure extracts higher levels of total phenols were found in the extract mixG. This could be the reason for the significant inhibition of melanoma cells and antimicrobial potential (against Staphylococcus aureus, Escherichia coli, and Candida albicans). The combination of the extracts resulted in a significant increase in the inhibition of selected microbial and melanoma cells WM-266-4 compared to the control. Cell viability decreased below 60% when mixG extract was applied. Antimicrobial activity has been confirmed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA