RESUMO
Muscleblind-like proteins (MBNLs) are a family of RNA-binding proteins that play essential roles in the regulation of RNA metabolism. Beyond their canonical role in RNA regulation, MBNL proteins have emerged as key players in the pathogenesis of Myotonic Dystrophy type 1 (DM1). In DM1, sequestration of MBNL proteins by expansion of the CUG repeat RNA leads to functional depletion of MBNL, resulting in deregulated alternative splicing and aberrant RNA processing, which underlie the clinical features of the disease. While attention to MBNL proteins has focused on their functions in skeletal muscle, new evidence suggests that their importance extends to motor neurons (MNs), pivotal cellular components in the control of motor skills and movement. To address this question, we generated conditional double knockout mice in which Mbnl1 and Mbnl2 were specifically deleted in motor neurons (MN-dKO). Adult MN-dKO mice develop gait coordination deficits associated with structural and ultrastructural defects in the neuromuscular junction, indicating that MBNL activity in MNs is crucial for the maintenance of the neuromuscular junction. In addition, transcriptome analysis performed on the spinal cord of MN-dKO mice identified mis-splicing events in genes associated with synaptic transmission and neuromuscular junction homeostasis. In summary, our results highlight the complex roles and regulatory mechanisms of MBNL proteins in MNs for muscle function and locomotion. This work provides valuable insights into fundamental aspects of RNA biology and offers promising avenues for therapeutic intervention in DM1 as well as a range of diseases associated with RNA dysregulation.
RESUMO
Sarcopenia involves a progressive loss of skeletal muscle force, quality and mass during ageing, which results in increased inability and death; however, no cure has been established thus far. Growth differentiation factor 5 (GDF5) has been described to modulate muscle mass maintenance in various contexts. For our proof of concept, we overexpressed GDF5 by AAV vector injection in tibialis anterior muscle of adult aged (20â months) mice and performed molecular and functional analysis of skeletal muscle. We analysed human vastus lateralis muscle biopsies from adult young (21-42â years) and aged (77-80â years) donors, quantifying the molecular markers modified by GDF5 overexpression in mouse muscle. We validated the major effects of GDF5 overexpression using human immortalized myotubes and Schwann cells. We established a preclinical study by treating chronically (for 4â months) aged mice using recombinant GDF5 protein (rGDF5) in systemic administration and evaluated the long-term effect of this treatment on muscle mass and function. Here, we demonstrated that GDF5 overexpression in the old tibialis anterior muscle promoted an increase of 16.5% of muscle weight (P = 0.0471) associated with a higher percentage of 5000-6000â µm2 large fibres (P = 0.0211), without the induction of muscle regeneration. Muscle mass gain was associated with an amelioration of 26.8% of rate of force generation (P = 0.0330) and better neuromuscular connectivity (P = 0.0098). Moreover, GDF5 overexpression preserved neuromuscular junction morphology (38.5% of nerve terminal area increase, P < 0.0001) and stimulated the expression of reinnervation-related genes, in particular markers of Schwann cells (fold-change 3.19 for S100b gene expression, P = 0.0101). To characterize the molecular events induced by GDF5 overexpression during ageing, we performed a genome-wide transcriptomic analysis of treated muscles and showed that this factor leads to a 'rejuvenating' transcriptomic signature in aged mice, as 42% of the transcripts dysregulated by ageing reverted to youthful expression levels upon GDF5 overexpression (P < 0.05). Towards a preclinical approach, we performed a long-term systemic treatment using rGDF5 and showed its effectiveness in counteracting age-related muscle wasting, improving muscle function (17.8% of absolute maximal force increase, P = 0.0079), ensuring neuromuscular connectivity and preventing neuromuscular junction degeneration (7.96% of AchR area increase, P = 0.0125). In addition, in human muscle biopsies, we found the same age-related alterations than those observed in mice and improved by GDF5 and reproduced its major effects on human cells, suggesting this treatment as efficient in humans. Overall, these data provide a foundation to examine the curative potential of GDF5 drug in clinical trials for sarcopenia and, eventually, other neuromuscular diseases.
Assuntos
Fator 5 de Diferenciação de Crescimento , Músculo Esquelético , Animais , Fator 5 de Diferenciação de Crescimento/genética , Humanos , Camundongos , Idoso , Adulto , Idoso de 80 Anos ou mais , Adulto Jovem , Músculo Esquelético/metabolismo , Masculino , Envelhecimento/fisiologia , Feminino , Sarcopenia/metabolismo , Células de Schwann/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Rejuvenescimento/fisiologia , Camundongos Endogâmicos C57BL , Doenças Neuromusculares/genética , Doenças Neuromusculares/terapia , Junção Neuromuscular/metabolismoRESUMO
Limited knowledge exists regarding the chronic effect of muscular exercise on muscle function in a murine model of severe Duchenne muscular dystrophy (DMD). Here we determined the effects of 1 month of voluntary wheel running (WR), 1 month of enforced treadmill running (TR) and 1 month of mechanical overloading resulting from the removal of the synergic muscles (OVL) in mice lacking both dystrophin and desmin (DKO). Additionally, we examined the effect of activin receptor administration (AR). DKO mice, displaying severe muscle weakness, atrophy and greater susceptibility to contraction-induced functional loss, were exercised or treated with AR at 1 month of age and in situ force production of lower leg muscle was measured at the age of 2 months. We found that TR and OVL increased absolute maximal force and the rate of force development of the plantaris muscle in DKO mice. In contrast, those of the tibialis anterior (TA) muscle remained unaffected by TR and WR. Furthermore, the effects of TR and OVL on plantaris muscle function in DKO mice closely resembled those in mdx mice, a less severe murine DMD model. AR also improved absolute maximal force and the rate of force development of the TA muscle in DKO mice. In conclusion, exercise training improved plantaris muscle weakness in severely affected dystrophic mice. Consequently, these preclinical results may contribute to fostering further investigations aimed at assessing the potential benefits of exercise for DMD patients, particularly resistance training involving a low number of intense muscle contractions. KEY POINTS: Very little is known about the effects of exercise training in a murine model of severe Duchenne muscular dystrophy (DMD). One reason is that it is feared that chronic muscular exercise, particularly that involving intense muscle contractions, could exacerbate the disease. In DKO mice lacking both dystrophin and desmin, characterized by severe lower leg muscle weakness, atrophy and fragility in comparison to the less severe DMD mdx model, we found that enforced treadmill running improved absolute maximal force of the plantaris muscle, while that of tibialis anterior muscle remained unaffected by both enforced treadmill and voluntary wheel running. Furthermore, mechanical overloading, a non-physiological model of chronic resistance exercise, reversed plantaris muscle weakness. Consequently, our findings may have the potential to alleviate concerns and pave the way for exploring the prescription of endurance and resistance training as a viable therapeutic approach for the treatment of dystrophic patients. Additionally, such interventions may serve in mitigating the pathophysiological mechanisms induced by physical inactivity.
Assuntos
Desmina , Distrofina , Músculo Esquelético , Condicionamento Físico Animal , Corrida , Animais , Masculino , Camundongos , Desmina/genética , Desmina/metabolismo , Distrofina/genética , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Camundongos Knockout , Contração Muscular , Força Muscular , Músculo Esquelético/fisiologia , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/fisiopatologia , Corrida/fisiologiaRESUMO
Duchenne muscular dystrophy (DMD) is a severe neuromuscular disease caused by Dmd mutations, resulting in the absence of dystrophin in skeletal muscle, and a greater susceptibility to damage during contraction (exercise). The current study evaluated whether voluntary exercise impacts a Dmd exon skipping and muscle physiology in a severe DMD murine model. D2-mdx mice were intramuscularly injected with an adeno-associated virus (AAV) U7 snRNA to correct Dmd reading frame, and allowed to voluntary run on a wheel for 1 month. Voluntary running did not induce muscle fiber regeneration, as indicated by the percentage of centronucleated fibers, Myh3 and Myh4 expression, and maximal force production, and thus possibly did not compromise the gene therapy approach. Voluntary running did not impact the number of viral genomes and the expression of U7 and Dmd 1 month after injection of AAV-U7 injected just before exercise initiation, but reduced the amount of dystrophin in dystrophin-expressing fibers from 80% to 65% of the muscle cross-sectional area. In conclusion, voluntary running did not induce muscle damage and had no drastic detrimental effect on the AAV gene therapy exon skipping approach in a severe murine DMD model. Moreover, these results suggest considering exercise as an additional element in the design and conception of future therapeutic approaches for DMD.
RESUMO
Skeletal muscles in animal models of Duchenne muscular dystrophy (DMD) are more susceptible to contraction-induced functional loss, which is not related to fatigue. Valproic acid (VPA) reportedly improves serological and histological markers of damage in dystrophin-deficient murine muscle. Here, we tested whether VPA would reduce the susceptibility to contraction-induced functional loss in two murine DMD models. Adult female mdx (mild) and D2-mdx (severe) DMD murine models were administered VPA (240 mg/kg) or saline for 7 days. Some VPA-treated mdx mice also performed voluntary running in a wheel, which is known to reduce the susceptibility to contraction-induced functional loss; that is, isometric force drop following eccentric contractions. In situ muscle function was assessed before, during and after eccentric contractions. Muscle utrophin and desmin expression were also evaluated using immunoblotting. Interestingly, VPA reduced the isometric force drop following eccentric contractions in both murine models, without change in the relative eccentric maximal force and in the expression of utrophin and desmin. VPA for 7 days combined with voluntary running had no additive effect compared to VPA alone. Furthermore, VPA reduced the absolute isometric maximal force before eccentric contractions in both murine models. The results of our study indicated that VPA in both murine DMD models reduced the susceptibility to contraction-induced functional loss but increased muscle weakness.
Assuntos
Distrofia Muscular de Duchenne , Feminino , Animais , Camundongos , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Ácido Valproico/farmacologia , Ácido Valproico/metabolismo , Camundongos Endogâmicos mdx , Utrofina/metabolismo , Modelos Animais de Doenças , Desmina/metabolismo , Contração Muscular/fisiologia , Músculo Esquelético/metabolismoRESUMO
KEY POINTS: Desmin, similar to dystrophin, is associated with costameric structures bridging sarcomeres to the extracellular matrix. Deletion of the desmin gene in mdx mice [double knockout (DKO) mice] induces marked muscle weakness and fatigue resistance compared to mdx mice. Muscle fragility (higher susceptibility to contraction-induced injury) was also aggravated in DKO mice compared to mdx mice. By contrast to mdx mice, the DKO mice did not undergo muscle hypertrophy. Desmin cDNA transfer with adeno-associated virus in newborn mdx mice reduced muscle weakness. Overall, desmin plays important and beneficial roles in muscle wasting, performance and fragility in dystrophic muscle. ABSTRACT: Duchenne muscular dystrophy (DMD) is a severe neuromuscular disease caused by dystrophin deficiency. Desmin, similar to dystrophin, is associated with costameric structures bridging sarcomeres to the extracellular matrix that contributes to muscle function. In the present study, we attempted to provide further insight into the roles of desmin, for which the expression is increased in the muscle from the mouse mdx DMD model. We show that a deletion of the desmin gene (Des) in mdx mice [double knockout (DKO) mice, mdx:desmin-/-] induces a marked muscle weakness; namely, a reduced absolute maximal force production and increased fatigue compared to that in mdx mice. Fragility (i.e. higher susceptibility to contraction-induced injury) was also aggravated in DKO mice compared to mdx mice, despite the promotion of supposedly less fragile muscle fibres in DKO mice, and this worsening of fragility was related to a decreased muscle excitability. Moreover, in contrast to mdx mice, the DKO mice did not undergo muscle hypertrophy, as indicated by smaller and fewer fibres, with a reduced percentage of centronucleated fibres, potentially explaining the severe muscle weakness. Notably, Desmin cDNA transfer with adeno-associated virus in newborn mdx mice improved specific maximal force normalized to muscle weight. Overall, desmin plays important and beneficial roles in muscle wasting, performance and fragility in dystrophic mdx mice, which differ, at least in part, from those observed in healthy muscle.
Assuntos
Músculo Esquelético , Distrofia Muscular de Duchenne , Animais , Desmina/genética , Modelos Animais de Doenças , Distrofina/genética , Camundongos , Camundongos Endogâmicos mdx , Distrofia Muscular de Duchenne/genéticaRESUMO
Dystrophin deficiency in mdx mice, a model for Duchenne muscular dystrophy, leads to muscle weakness revealed by a reduced specific maximal force as well as fragility (ie, higher susceptibility to contraction-induced injury, as shown by a greater force decrease after lengthening contractions). Both symptoms could be improved with dystrophin restoration-based therapies and long-term (months) voluntary exercise. Herein, we evaluated the effect of short-term (1-week) voluntary wheel running. We found that running improved fragility of tibialis anterior muscle (TA), but not plantaris muscle, independently of utrophin up-regulation, without affecting weakness. Moreover, TA muscle excitability was also preserved by running, as shown by compound muscle action potential measurements after lengthening contractions. Of interest, the calcineurin inhibitor cyclosporin A prevented the effect of running on both muscle fragility and excitability. Cyclosporin also prevented the running-induced changes in expression of genes involved in excitability (Scn4a and Cacna1s) and slower contractile phenotype (Myh2 and Tnni1) in TA muscle. In conclusion, short-term voluntary exercise improves TA muscle fragility in mdx mice, without worsening weakness. Its effect was related to preserved excitability, calcineurin pathway activation, and changes in the program of genes involved in excitability and slower contractile phenotype. Thus, remediation of muscle fragility of Duchenne muscular dystrophy patients through appropriate exercise training deserves to be explored in more detail.
Assuntos
Calcineurina/metabolismo , Distrofia Muscular Animal/prevenção & controle , Condicionamento Físico Animal , Animais , Camundongos , Camundongos Endogâmicos mdx , Atividade Motora , Contração Muscular , Distrofia Muscular Animal/metabolismo , Distrofia Muscular Animal/patologiaRESUMO
To better define the role of male and female gonad-related factors (MGRF, presumably testosterone, and FGRF, presumably estradiol, respectively) on mouse hindlimb skeletal muscle contractile performance/function gain during postnatal development, we analyzed the effect of castration initiated before puberty in male and female mice. We found that muscle absolute and specific (normalized to muscle weight) maximal forces were decreased in 6-mo-old male and female castrated mice compared with age- and sex-matched intact mice, without alteration in neuromuscular transmission. Moreover, castration decreased absolute and specific maximal powers, another important aspect of muscle performance, in 6-mo-old males, but not in females. Absolute maximal force was similarly reduced by castration in 3-mo-old muscle fiber androgen receptor (AR)-deficient and wild-type male mice, indicating that the effect of MGRF was muscle fiber AR independent. Castration reduced the muscle weight gain in 3-mo mice of both sexes and in 6-mo females but not in males. We also found that bone morphogenetic protein signaling through Smad1/5/9 was not altered by castration in atrophic muscle of 3-mo-old mice of both sexes. Moreover, castration decreased the sexual dimorphism regarding muscle performance. Together, these results demonstrated that in the long term, MGRF and FGRF promote muscle performance gain in mice during postnatal development, independently of muscle growth in males, largely via improving muscle contractile quality (force and power normalized), and that MGFR and FGRF also contribute to sexual dimorphism. However, the mechanisms underlying MGFR and FGRF actions remain to be determined.
Assuntos
Envelhecimento/fisiologia , Hormônios Esteroides Gonadais/metabolismo , Contração Muscular/fisiologia , Força Muscular/fisiologia , Músculo Esquelético/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Peso Corporal/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fadiga Muscular/fisiologia , Músculo Esquelético/metabolismo , Fatores SexuaisRESUMO
Mechanical overloading (OVL) resulting from the ablation of muscle agonists, a supra-physiological model of resistance training, reduces skeletal muscle fragility, i.e. the immediate maximal force drop following lengthening contractions, and increases maximal force production, in mdx mice, a murine model of Duchene muscular dystrophy (DMD). Here, we further analyzed these beneficial effects of OVL by determining whether they were blocked by cyclosporin, an inhibitor of the calcineurin pathway, and whether there were also observed in the D2-mdx mice, a more severe murine DMD model. We found that cyclosporin did not block the beneficial effect of 1-month OVL on plantaris muscle fragility in mdx mice, nor did it limit the increases in maximal force and muscle weight (an index of hypertrophy). Fragility and maximal force were also ameliorated by OVL in the plantaris muscle of D2-mdx mice. In addition, OVL increased the expression of utrophin, cytoplamic γ-actin, MyoD, and p-Akt in the D2-mdx mice, proteins playing an important role in fragility, maximal force gain and muscle growth. In conclusion, OVL reduced fragility and increased maximal force in the more frequently used mild mdx model but also in D2-mdx mice, a severe model of DMD, closer to human physiopathology. Moreover, these beneficial effects of OVL did not seem to be related to the activation of the calcineurin pathway. Thus, this preclinical study suggests that resistance training could have a potential benefit in the improvement of the quality of life of DMD patients.
Assuntos
Ciclosporinas , Distrofia Muscular de Duchenne , Treinamento Resistido , Humanos , Animais , Camundongos , Distrofia Muscular de Duchenne/patologia , Camundongos Endogâmicos mdx , Calcineurina/metabolismo , Qualidade de Vida , Músculo Esquelético/metabolismo , Ciclosporinas/farmacologia , Modelos Animais de DoençasRESUMO
BACKGROUND: Exercise is widely considered to have beneficial impact on skeletal muscle aging. In addition, there are also several studies demonstrating a positive effect of exercise on muscular dystrophies. Oculopharyngeal muscular dystrophy (OPMD) is a late-onset autosomal dominant inherited neuromuscular disorder caused by mutations in the PAPBN1 gene. These mutations consist in short (1-8) and meiotically stable GCN trinucleotide repeat expansions in its coding region responsible for the formation of PAPBN1 intranuclear aggregates. This study aims to characterize the effects of two types of chronic exercise, resistance and endurance, on the OPMD skeletal muscle phenotype using a relevant murine model of OPMD. METHODS: In this study, we tested two protocols of exercise. In the first, based on endurance exercise, FvB (wild-type) and A17 (OPMD) mice underwent a 6-week-long motorized treadmill protocol consisting in three sessions per week of running 20 cm/s for 20 min. In the second protocol, based on resistance exercise generated by chronic mechanical overload (OVL), surgical removal of gastrocnemius and soleus muscles was performed, inducing hypertrophy of the plantaris muscle. In both types of exercise, muscles of A17 and FvB mice were compared with those of respective sedentary mice. For all the groups, force measurement, muscle histology, and molecular analyses were conducted. RESULTS: Following the endurance exercise protocol, we did not observe any major changes in the muscle physiological parameters, but an increase in the number of PABPN1 intranuclear aggregates in both tibialis anterior (+24%, **P = 0.0026) and gastrocnemius (+18%, ****P < 0.0001) as well as enhanced collagen deposition (+20%, **P = 0.0064 in the tibialis anterior; +35%, **P = 0.0042 in the gastrocnemius) in the exercised A17 OPMD mice. In the supraphysiological resistance overload protocol, we also observed an increased collagen deposition (×2, ****P < 0.0001) in the plantaris muscle of A17 OPMD mice which was associated with larger muscle mass (×2, ****P < 0.0001) and fibre cross sectional area (×2, ***P = 0.0007) and increased absolute maximal force (×2, ****P < 0.0001) as well as a reduction in PABPN1 aggregate number (-16%, ****P < 0.0001). CONCLUSIONS: Running exercise and mechanical overload led to very different outcome in skeletal muscles of A17 mice. Both types of exercise enhanced collagen deposition but while the running protocol increased aggregates, the OVL reduced them. More importantly OVL reversed muscle atrophy and maximal force in the A17 mice. Our study performed in a relevant model gives an indication of the effect of different types of exercise on OPMD muscle which should be further evaluated in humans for future recommendations as a part of the lifestyle of individuals with OPMD.
Assuntos
Modelos Animais de Doenças , Músculo Esquelético , Distrofia Muscular Oculofaríngea , Condicionamento Físico Animal , Treinamento Resistido , Animais , Distrofia Muscular Oculofaríngea/genética , Camundongos , Músculo Esquelético/fisiopatologia , Músculo Esquelético/patologia , Masculino , Resistência FísicaRESUMO
PURPOSE: Greater muscle fragility is thought to cause the exhaustion of the muscle stem cells during successive degeneration/repair cycles, leading to muscle wasting and weakness in Duchenne muscular dystrophy. Chronic voluntary exercise can partially reduce the susceptibility to contraction induced-muscle damage, i.e., muscle fragility, as shown by a reduced immediate maximal force drop following lengthening contractions, in the dystrophic mdx mice. Here, we studied the effect of Prospero-related homeobox factor 1 gene (Prox1) transfer (overexpression) using an AAV on fragility in chronically exercised mdx mice, because Prox1 promotes slower type fibres in healthy mice and slower fibres are less fragile in mdx muscle. METHODS: Both tibialis anterior muscles of the same mdx mouse received the transfer of Prox1 and PBS and the mice performed voluntary running into a wheel during 1 month. We also performed Prox1 transfer in sedentary mdx mice. In situ maximal force production of the muscle in response to nerve stimulation was assessed before, during and after 10 lengthening contractions. Molecular muscle parameters were also evaluated. RESULTS: Interestingly, Prox1 transfer reduced the isometric force drop following lengthening contractions in exercised mdx mice (p < 0.05 to 0.01), but not in sedentary mdx mice. It also increased the muscle expression of Myh7 (p < 0.001), MHC-2x (p < 0.01) and Trpc1 (p < 0.01), whereas it reduced that one of Myh4 (p < 0.001) and MHC-2b (p < 0.01) in exercised mdx mice. Moreover, Prox1 transfer decreased the absolute maximal isometric force (p < 0.01), but not the specific maximal isometric force, before lengthening contraction in exercised (p < 0.01) and sedentary mdx mice. CONCLUSION: Our results indicate that Prox1 transfer increased the beneficial effect of chronic exercise on muscle fragility in mdx mice, but reduced absolute maximal force. Thus, the potential clinical benefit of the transfer of Prox1 into exercised dystrophic muscle can merit further investigation.
Assuntos
Distrofia Muscular Animal , Distrofia Muscular de Duchenne , Animais , Terapia Genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/metabolismo , Distrofia Muscular Animal/terapia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/terapiaRESUMO
Dominant dynamin 2 (DNM2) mutations are responsible for the autosomal dominant centronuclear myopathy (AD-CNM), a rare progressive neuromuscular disorder ranging from severe neonatal to mild adult forms. We previously demonstrated that mutant-specific RNA interference is an efficient therapeutic strategy to rescue the muscle phenotype at the onset of the symptoms in the AD-CNM knockin-Dnm2 R465W/+ mouse model. Our objective was to evaluate the long-term benefit of the treatment along with the disease time course. We demonstrate here that the complete rescue of the muscle phenotype is maintained for at least 1 year after a single injection of adeno-associated virus expressing the mutant-specific short hairpin RNA (shRNA). This was achieved by a maintained reduction of the mutant Dnm2 transcript. Moreover, this long-term study uncovers a pathological accumulation of DNM2 protein occurring with age in the mouse model and prevented by the treatment. Conversely, a physiological DNM2 protein decrease with age was observed in muscles from wild-type mice. Therefore, this study highlights a new potential pathophysiological mechanism linked to mutant protein accumulation and underlines the importance of DNM2 protein expression level for proper muscle function. Overall, these results strengthen the allele-specific silencing approach as a robust, safe, and efficient therapy for AD-CNM.
RESUMO
The development of the neuromuscular junction (NMJ) requires dynamic trans-synaptic coordination orchestrated by secreted factors, including Wnt family morphogens. To investigate how these synaptic cues in NMJ development are transduced, particularly in the regulation of acetylcholine receptor (AChR) accumulation in the postsynaptic membrane, we explored the function of Van Gogh-like protein 2 (Vangl2), a core component of Wnt planar cell polarity signaling. We found that conditional, muscle-specific ablation of Vangl2 in mice reproduced the NMJ differentiation defects seen in mice with global Vangl2 deletion. These alterations persisted into adulthood and led to NMJ disassembly, impaired neurotransmission, and deficits in motor function. Vangl2 and the muscle-specific receptor tyrosine kinase MuSK were functionally associated in Wnt signaling in the muscle. Vangl2 bound to and promoted the signaling activity of MuSK in response to Wnt11. The loss of Vangl2 impaired RhoA activation in cultured mouse myotubes and caused dispersed, rather than clustered, organization of AChRs at the postsynaptic or muscle cell side of NMJs in vivo. Our results identify Vangl2 as a key player of the core complex of molecules shaping neuromuscular synapses and thus shed light on the molecular mechanisms underlying NMJ assembly.
Assuntos
Polaridade Celular , Proteínas do Tecido Nervoso/metabolismo , Proteínas Tirosina Quinases , Animais , Ácidos Graxos Monoinsaturados , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Receptores Colinérgicos/genética , Receptores Colinérgicos/metabolismo , Sinapses/genética , Sinapses/metabolismoRESUMO
Myotonic dystrophy type 1 (DM1) is an RNA-dominant disease whose pathogenesis stems from the functional loss of muscleblind-like RNA-binding proteins (RBPs), which causes the formation of alternative-splicing defects. The loss of functional muscleblind-like protein 1 (MBNL1) results from its nuclear sequestration by mutant transcripts containing pathogenic expanded CUG repeats (CUGexp). Here we show that an RBP engineered to act as a decoy for CUGexp reverses the toxicity of the mutant transcripts. In vitro, the binding of the RBP decoy to CUGexp in immortalized muscle cells derived from a patient with DM1 released sequestered endogenous MBNL1 from nuclear RNA foci, restored MBNL1 activity, and corrected the transcriptomic signature of DM1. In mice with DM1, the local or systemic delivery of the RBP decoy via an adeno-associated virus into the animals' skeletal muscle led to the long-lasting correction of the splicing defects and to ameliorated disease pathology. Our findings support the development of decoy RBPs with high binding affinities for expanded RNA repeats as a therapeutic strategy for myotonic dystrophies.
Assuntos
Distrofia Miotônica , Animais , Núcleo Celular/genética , Núcleo Celular/metabolismo , Núcleo Celular/patologia , Humanos , Camundongos , Músculo Esquelético/metabolismo , Distrofia Miotônica/genética , Distrofia Miotônica/metabolismo , Distrofia Miotônica/terapia , RNA/genética , RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismoRESUMO
Duchenne muscular dystrophy (DMD) is a recessive hereditary myopathy due to deficiency of functional dystrophin. Current therapeutic interventions need more investigation to slow down the progression of skeletal and cardiac muscle weakness. In humans, there is a lack of an adapted training program. In animals, the murine Mdx model with a DBA/2J background (D2-mdx) was recently suggested to present pathological features closer to that of humans. In this study, we characterized skeletal and cardiac muscle functions in males and females D2-mdx mice compared to control groups. We also evaluated the impact of high intensity interval training (HIIT) in these muscles in females and males. HIIT was performed 5 times per week during a month on a motorized treadmill. Specific maximal isometric force production and weakness were measured in the tibialis anterior muscle (TA). Sedentary male and female D2-mdx mice produced lower absolute and specific maximal force compared to control mice. Dystrophic mice showed a decline of force generation during repetitive stimulation compared to controls. This reduction was greater for male D2-mdx mice than females. Furthermore, trained D2-mdx males showed an improvement in force generation after the fifth lengthening contraction compared to sedentary D2-mdx males. Moreover, echocardiography measures revealed a decrease in left ventricular end-diastolic volume, left ventricular ejection volume and left ventricular end-diastolic diameter in sedentary male and female D2-mdx mice. Overall, our results showed a serious muscle function alteration in female and male D2-mdx mice compared to controls. HIIT may delay force loss especially in male D2-mdx mice.
RESUMO
Cofilins are important for the regulation of the actin cytoskeleton, sarcomere organization, and force production. The role of cofilin-1, the non-muscle-specific isoform, in muscle function remains unclear. Mutations in LMNA encoding A-type lamins, intermediate filament proteins of the nuclear envelope, cause autosomal Emery-Dreifuss muscular dystrophy (EDMD). Here, we report increased cofilin-1 expression in LMNA mutant muscle cells caused by the inability of proteasome degradation, suggesting a protective role by ERK1/2. It is known that phosphorylated ERK1/2 directly binds to and catalyzes phosphorylation of the actin-depolymerizing factor cofilin-1 on Thr25. In vivo ectopic expression of cofilin-1, as well as its phosphorylated form on Thr25, impairs sarcomere structure and force generation. These findings present a mechanism that provides insight into the molecular pathogenesis of muscular dystrophies caused by LMNA mutations.
Assuntos
Citoesqueleto de Actina/metabolismo , Cofilina 1/metabolismo , Destrina/metabolismo , Lamina Tipo A/metabolismo , Laminopatias/metabolismo , Músculo Estriado/metabolismo , Sarcômeros/metabolismo , Adolescente , Adulto , Animais , Linhagem Celular , Criança , Humanos , Lamina Tipo A/genética , Laminopatias/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Músculo Estriado/patologia , Distrofia Muscular de Emery-Dreifuss/genética , Distrofia Muscular de Emery-Dreifuss/metabolismo , Mutação , Fosforilação , Transdução de Sinais , Adulto JovemRESUMO
Duchenne muscular dystrophy (DMD) is a devastating neuromuscular disease caused by an absence of the dystrophin protein, which is essential for muscle fiber integrity. Among the developed therapeutic strategies for DMD, the exon-skipping approach corrects the frameshift and partially restores dystrophin expression. It could be achieved through the use of antisense sequences, such as peptide-conjugated phosphorodiamidate morpholino oligomer (PPMO) or the small nuclear RNA-U7 carried by an adeno-associated virus (AAV) vector. AAV-based gene therapy approaches have potential for use in DMD treatment but are subject to a major limitation: loss of the AAV genome, necessitating readministration of the vector, which is not currently possible, due to the immunogenicity of the capsid. The PPMO approach requires repeated administrations and results in only weak cardiac dystrophin expression. Here, we evaluated a combination of PPMO- and AAV-based therapy in a mouse model of severe DMD. Striking benefits of this combined therapy were observed in striated muscles, with marked improvements in heart and diaphragm structure and function, with unrivalled extent of survival, opening novel therapeutic perspectives for patients.
RESUMO
Clathrin function directly derives from its coat structure, and while endocytosis is mediated by clathrin-coated pits, large plaques contribute to cell adhesion. Here, we show that the alternative splicing of a single exon of the clathrin heavy chain gene (CLTC exon 31) helps determine the clathrin coat organization. Direct genetic control was demonstrated by forced CLTC exon 31 skipping in muscle cells that reverses the plasma membrane content from clathrin plaques to pits and by promoting exon inclusion that stimulated flat plaque assembly. Interestingly, mis-splicing of CLTC exon 31 found in the severe congenital form of myotonic dystrophy was associated with reduced plaques in patient myotubes. Moreover, forced exclusion of this exon in WT mice muscle induced structural disorganization and reduced force, highlighting the contribution of this splicing event for the maintenance of tissue homeostasis. This genetic control on clathrin assembly should influence the way we consider how plasticity in clathrin-coated structures is involved in muscle development and maintenance.
Assuntos
Processamento Alternativo/fisiologia , Cadeias Pesadas de Clatrina/metabolismo , Clatrina/metabolismo , Invaginações Revestidas da Membrana Celular/metabolismo , Adulto , Animais , Membrana Celular/metabolismo , Criança , Endocitose/fisiologia , Éxons/fisiologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/metabolismo , Adulto JovemRESUMO
Deciphering the mechanisms that govern skeletal muscle plasticity is essential to understand its pathophysiological processes, including age-related sarcopenia. The voltage-gated calcium channel CaV1.1 has a central role in excitation-contraction coupling (ECC), raising the possibility that it may also initiate the adaptive response to changes during muscle activity. Here, we revealed the existence of a gene transcription switch of the CaV1.1 ß subunit (CaVß1) that is dependent on the innervation state of the muscle in mice. In a mouse model of sciatic denervation, we showed increased expression of an embryonic isoform of the subunit that we called CaVß1E. CaVß1E boosts downstream growth differentiation factor 5 (GDF5) signaling to counteract muscle loss after denervation in mice. We further reported that aged mouse muscle expressed lower quantity of CaVß1E compared with young muscle, displaying an altered GDF5-dependent response to denervation. Conversely, CaVß1E overexpression improved mass wasting in aging muscle in mice by increasing GDF5 expression. We also identified the human CaVß1E analogous and show a correlation between CaVß1E expression in human muscles and age-related muscle mass decline. These results suggest that strategies targeting CaVß1E or GDF5 might be effective in reducing muscle mass loss in aging.