Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell Biol ; 27(7): 2601-14, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17242181

RESUMO

Inverted DNA repeats are known to cause genomic instabilities. Here we demonstrate that double-strand DNA breaks (DSBs) introduced a large distance from inverted repeats in the yeast (Saccharomyces cerevisiae) chromosome lead to a burst of genomic instability. Inverted repeats located as far as 21 kb from each other caused chromosome rearrangements in response to a single DSB. We demonstrate that the DSB initiates a pairing interaction between inverted repeats, resulting in the formation of large dicentric inverted dimers. Furthermore, we observed that propagation of cells containing inverted dimers led to gross chromosomal rearrangements, including translocations, truncations, and amplifications. Finally, our data suggest that break-induced replication is responsible for the formation of translocations resulting from anaphase breakage of inverted dimers. We propose a model explaining the formation of inverted dicentric dimers by intermolecular single-strand annealing (SSA) between inverted DNA repeats. According to this model, anaphase breakage of inverted dicentric dimers leads to gross chromosomal rearrangements (GCR). This "SSA-GCR" pathway is likely to be important in the repair of isochromatid breaks resulting from collapsed replication forks, certain types of radiation, or telomere aberrations that mimic isochromatid breaks.


Assuntos
Cromátides/fisiologia , Aberrações Cromossômicas , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Modelos Genéticos , Sequências Repetitivas de Ácido Nucleico , Anáfase , Cromátides/genética , Cromossomos Fúngicos/genética , Replicação do DNA , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/fisiologia , Dimerização , Instabilidade Genômica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Translocação Genética
2.
DNA Repair (Amst) ; 5(9-10): 1010-20, 2006 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-16798113

RESUMO

Homologous recombination between dispersed repeated genetic elements is an important source of genetic variation. In this review, we discuss chromosome rearrangements that are a consequence of homologous recombination between transposable elements in the yeast Saccharomyces cerevisiae. The review will be divided into five sections: (1) Introduction (mechanisms of homologous recombination involving ectopic repeats), (2) Spontaneous chromosome rearrangements in wild-type yeast cells, (3) Chromosome rearrangements induced by low DNA polymerase, mutagenic agents or mutations in genes affecting genome stability, (4) Recombination between retrotransposons as a mechanism of genome evolution, and (5) Important unanswered questions about homologous recombination between retrotransposons. This review complements several others [S. Liebman, S. Picologlou, Recombination associated with yeast retrotransposons, in: Y. Koltin, M.J. Leibowitz (Eds.), Viruses of Fungi and Simple Eukaryotes, Marcel Dekker Inc., New York, 1988, pp. 63-89; P. Lesage, A.L. Todeschini, Happy together: the life and times of Ty retrotransposons and their hosts, Cytogenet. Genome Res. 110 (2005) 70-90; D.J. Garfinkel, Genome evolution mediated by Ty elements in Saccharomyces, Cytogenet. Genome Res. 110 (2005) 63-69] that discuss genomic rearrangements involving Ty elements.


Assuntos
Cromossomos Fúngicos , Rearranjo Gênico , Recombinação Genética , Retroelementos , Saccharomyces cerevisiae/genética , DNA Polimerase Dirigida por DNA/genética , Evolução Molecular , Instabilidade Genômica , Modelos Genéticos , Mutação
3.
Oncogene ; 21(47): 7230-4, 2002 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-12370813

RESUMO

The importance of maintaining genomic stability is evidenced by the fact that transformed cells often contain a variety of chromosomal abnormalities such as euploidy, translocations, and inversions. Gene amplification is a well-characterized hallmark of genomic instability thought to result from recombination events following the formation of double-strand, chromosomal breaks. Therefore, gene amplification frequency serves as an indicator of genomic stability. The PALA assay is designed to measure directly the frequency with which a specific gene, CAD, is amplified within a cell's genome. We have used the PALA assay to analyse the effects of the human T-cell leukemia virus type I (HTLV-I) oncoprotein, Tax, on genomic amplification. We demonstrate that Tax-expressing cells are five-times more likely to undergo gene amplification than control cells. Additionally, we show that Tax alters the ability of cells to undergo the typical PALA-mediated G(1) phase cell cycle arrest, thereby allowing cells to replicate DNA in the absence of appropriate nucleotide pools. This effect is likely the mechanism by which Tax induces gene amplification. These data suggest that HTLV-I Tax alters the genomic stability of cells, an effect that may play an important role in Tax-mediated, HTLV-I associated cellular transformation.


Assuntos
Ácido Aspártico/análogos & derivados , Amplificação de Genes , Produtos do Gene tax/farmacologia , Vírus Linfotrópico T Tipo 1 Humano/metabolismo , Ácido Fosfonoacéticos/análogos & derivados , Animais , Aspartato Carbamoiltransferase , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante) , Linhagem Celular Transformada , Di-Hidro-Orotase , Técnicas Genéticas , Complexos Multienzimáticos , Ratos
4.
PLoS One ; 8(2): e55989, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23405243

RESUMO

Genomic instability stemming from dysregulation of cell cycle checkpoints and DNA damage response (DDR) is a common feature of many cancers. The cancer adult T cell leukemia (ATL) can occur in individuals infected with human T cell leukemia virus type 1 (HTLV-1), and ATL cells contain extensive chromosomal abnormalities, suggesting that they have defects in the recognition or repair of DNA damage. Since Tax is the transforming protein encoded by HTLV-1, we asked whether Tax can affect cell cycle checkpoints and the DDR. Using a combination of flow cytometry and DNA repair assays we showed that Tax-expressing cells exit G(1) phase and initiate DNA replication prematurely following damage. Reduced phosphorylation of H2AX (γH2AX) and RPA2, phosphoproteins that are essential to properly initiate the DDR, was also observed in Tax-expressing cells. To determine the cause of decreased DDR protein phosphorylation in Tax-expressing cells, we examined the cellular phosphatase, WIP1, which is known to dephosphorylate γH2AX. We found that Tax can interact with Wip1 in vivo and in vitro, and that Tax-expressing cells display elevated levels of Wip1 mRNA. In vitro phosphatase assays showed that Tax can enhance Wip1 activity on a γH2AX peptide target by 2-fold. Thus, loss of γH2AX in vivo could be due, in part, to increased expression and activity of WIP1 in the presence of Tax. siRNA knockdown of WIP1 in Tax-expressing cells rescued γH2AX in response to damage, confirming the role of WIP1 in the DDR. These studies demonstrate that Tax can disengage the G(1)/S checkpoint by enhancing WIP1 activity, resulting in reduced DDR. Premature G(1) exit of Tax-expressing cells in the presence of DNA lesions creates an environment that tolerates incorporation of random mutations into the host genome.


Assuntos
Dano ao DNA/fisiologia , Fase G1/fisiologia , Produtos do Gene tax/genética , Fragmentos de Peptídeos/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Fase S/fisiologia , Adulto , Animais , Western Blotting , Células Cultivadas , Dano ao DNA/efeitos da radiação , Reparo do DNA/fisiologia , Reparo do DNA/efeitos da radiação , Replicação do DNA/efeitos da radiação , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/efeitos da radiação , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Citometria de Fluxo , Imunofluorescência , Fase G1/efeitos da radiação , Histonas/genética , Histonas/metabolismo , Vírus Linfotrópico T Tipo 1 Humano/genética , Humanos , Imunoprecipitação , Fosfoproteínas Fosfatases/antagonistas & inibidores , Fosfoproteínas Fosfatases/genética , Fosforilação , Proteína Fosfatase 2C , Dímeros de Pirimidina , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fase S/efeitos da radiação , Raios Ultravioleta
5.
Mol Cell Biol ; 28(17): 5359-68, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18591249

RESUMO

Specific regions of genomes (fragile sites) are hot spots for the chromosome rearrangements that are associated with many types of cancer cells. Understanding the molecular mechanisms regulating the stability of chromosome fragile sites, therefore, has important implications in cancer biology. We previously identified two chromosome fragile sites in Saccharomyces cerevisiae that were induced in response to the reduced expression of Pol1p, the catalytic subunit of DNA polymerase alpha. In the study presented here, we show that reduced levels of Pol3p, the catalytic subunit of DNA polymerase delta, induce instability at these same sites and lead to the generation of a variety of chromosomal aberrations. These findings demonstrate that a change in the stoichiometry of replicative DNA polymerases results in recombinogenic DNA lesions, presumably double-strand DNA breaks.


Assuntos
Sítios Frágeis do Cromossomo , Fragilidade Cromossômica , DNA Polimerase III/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Sequência de Bases , Cromossomos Fúngicos/metabolismo , Cruzamentos Genéticos , Dano ao DNA , Diploide , Deleção de Genes , Genes Fúngicos , Haploidia , Mitose/efeitos dos fármacos , Dados de Sequência Molecular , Mutação/genética , Hibridização de Ácido Nucleico , Fenótipo , Recombinação Genética/genética , Reprodução , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética
6.
Cell ; 120(5): 587-98, 2005 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-15766523

RESUMO

In the yeast Saccharomyces cerevisiae, reduced levels of the replicative alpha DNA polymerase result in greatly elevated frequencies of chromosome translocations and chromosome loss. We selected translocations in a small region of chromosome III and found that they involve homologous recombination events between yeast retrotransposons (Ty elements) on chromosome III and retrotransposons located on other chromosomes. One of the two preferred sites of these translocations on chromosome III involve two Ty elements arrayed head-to-head; disruption of this site substantially reduces the rate of translocations. We demonstrate that this pair of Ty elements constitutes a preferred site for double-strand DNA breaks when DNA replication is compromised, analogous to the fragile sites observed in mammalian chromosomes.


Assuntos
Instabilidade Cromossômica/genética , Sítios Frágeis do Cromossomo/fisiologia , DNA Polimerase I/metabolismo , Retroelementos/genética , Saccharomyces cerevisiae/genética , Translocação Genética/genética , Sítios Frágeis do Cromossomo/genética , Mapeamento Cromossômico , Dano ao DNA/genética , DNA Polimerase I/genética , Reparo do DNA/genética , Replicação do DNA/genética , Regulação Fúngica da Expressão Gênica/genética , Genoma Fúngico , Análise de Sequência com Séries de Oligonucleotídeos , Recombinação Genética/genética , Saccharomyces cerevisiae/enzimologia
7.
J Biomed Sci ; 9(4): 292-8, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12145525

RESUMO

Genetic instability is a recurring theme in human cancers. Although the molecular mechanisms mediating this effect commonly observed in transformed cells are not completely understood, it has been proposed to involve either the loss of DNA repair capabilities or the loss of chromosomal stability. The transforming retrovirus human T cell leukemia virus type I (HTLV-I) encodes a viral oncoprotein Tax, which is believed to cause the genomic instability characteristic of HTLV-I-infected cells. This review focuses on the ability of HTLV-I Tax to disrupt the cellular processes of DNA repair and chromosomal segregation. The consequences of these effects as well as the evolutionary advantage this may provide to HTLV-I are discussed.


Assuntos
Transformação Celular Neoplásica , Aberrações Cromossômicas , Dano ao DNA , Produtos do Gene tax/metabolismo , Vírus Linfotrópico T Tipo 1 Humano/metabolismo , Aneuploidia , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ciclo Celular , Reparo do DNA , Humanos , Proteínas Mad2 , Neoplasias/genética , Proteínas Nucleares , Fosfoproteínas/metabolismo , Proteínas Repressoras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA