Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Toxicol Appl Pharmacol ; 482: 116768, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38030093

RESUMO

Arsenic is a relatively abundant metalloid that impacts DNA methylation and has been implicated in various adverse health outcomes including several cancers and diabetes. However, uncertainty remains about the identity of genomic CpGs that are sensitive to arsenic exposure, in utero or otherwise. Here we identified a high confidence set of CpG sites whose methylation is sensitive to in utero arsenic exposure. To do so, we analyzed methylation of infant CpGs as a function of maternal urinary arsenic in cord blood and placenta from geographically and ancestrally distinct human populations. Independent analyses of these distinct populations were followed by combination of results across sexes and populations/tissue types. Following these analyses, we concluded that both sex and tissue type are important drivers of heterogeneity in methylation response at several CpGs. We also identified 17 high confidence CpGs that were hypermethylated across sex, tissue type and population; 11 of these were located within protein coding genes. This pattern is consistent with hypotheses that arsenic increases cancer risk by inducing the hypermethylation of genic regions. This study represents an opportunity to understand consistent, reproducible patterns of epigenomic responses after in utero arsenic exposure and may aid towards novel biomarkers or signatures of arsenic exposure. Identifying arsenic-responsive sites can also contribute to our understanding of the biological mechanisms by which arsenic exposure can affect biological function and increase risk of cancer and other age-related diseases.


Assuntos
Arsênio , Neoplasias , Gravidez , Feminino , Humanos , Arsênio/toxicidade , Metilação de DNA , Placenta , Sangue Fetal , Ilhas de CpG , Neoplasias/induzido quimicamente , Neoplasias/genética , Exposição Materna/efeitos adversos
2.
Environ Sci Technol ; 58(24): 10470-10481, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38844831

RESUMO

Rural workers are disproportionally exposed to pesticides and might be at an increased risk of developing chronic diseases. Here, we investigated the impact of pesticide exposure on breast cancer (BC) risk and disease profile in rural female workers. This is a case-control study that prospectively included 758 individuals. The study was conducted in the Southwest region of Paraná state in Brazil, a region characterized by family-based agriculture and intensive use of pesticides. We found that this region has a 41% higher BC diagnosis rate and 14% higher BC mortality rate than the mean rates in Brazil, as well as a pesticide trade volume about 6 times higher than the national average. We showed substantial exposure in this population and found that even women who did not work in the fields but performed equipment decontamination and clothes washing of male partners who worked in the fields had urine samples positive for glyphosate, atrazine, and/or 2,4-D. The crude association showed a significantly higher risk of BC among women exposed to pesticides (OR: 1.58, 95% CI 1.18-2.13). Adjusted analyses showed a lower and nonstatistically significant association (OR: 1.30, 95% CI 41 0.87-1.95). Stratification on disease profile showed a significantly higher risk of lymph node metastasis (adjusted OR: 2.19, 95% CI 1.31-3.72) in women exposed to pesticides. Our findings suggest that female populations exposed to pesticides are at a higher risk of developing BC with a more aggressive profile and draw attention to the need to monitor rural populations potentially exposed to pesticides in the field or at home.


Assuntos
Agricultura , Neoplasias da Mama , Exposição Ocupacional , Praguicidas , Humanos , Brasil/epidemiologia , Neoplasias da Mama/epidemiologia , Feminino , Estudos de Casos e Controles , Pessoa de Meia-Idade , Adulto , População Rural
3.
Heredity (Edinb) ; 130(5): 312-319, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36914794

RESUMO

Although containing genes important for sex determination, genetic variation within the Y chromosome was traditionally predicted to contribute little to the expression of sexually dimorphic traits. This prediction was shaped by the assumption that the chromosome harbours few protein-coding genes, and that capacity for Y-linked variation to shape adaptation would be hindered by the chromosome's lack of recombination and holandric inheritance. Consequently, most studies exploring the genotypic contributions to sexually dimorphic traits have focused on the autosomes and X chromosome. Yet, several studies have now demonstrated that the Y chromosome harbours variation affecting male fitness, moderating the expression of hundreds of genes across the nuclear genome. Furthermore, emerging results have shown that expression of this Y-linked variation may be sensitive to environmental heterogeneity, leading to the prediction that Y-mediated gene-by-environment interactions will shape the expression of sexually dimorphic phenotypes. We tested this prediction, investigating whether genetic variation across six distinct Y chromosome haplotypes affects the expression of locomotor activity, at each of two temperatures (20 and 28 °C) in male fruit flies (Drosophila melanogaster). Locomotor activity is a sexually dimorphic trait in this species, previously demonstrated to be under intralocus sexual conflict. We demonstrate Y haplotype effects on male locomotor activity, but the rank order and magnitude of these effects were unaltered by differences in temperature. Our study contributes to a growing number of studies demonstrating Y-linked effects moderating expression of traits evolving under sexually antagonistic selection, suggesting a role for the Y chromosome in shaping outcomes of sexual conflict.


Assuntos
Drosophila melanogaster , Genes Ligados ao Cromossomo Y , Animais , Masculino , Drosophila melanogaster/genética , Cromossomo Y/genética , Cromossomo X/genética , Locomoção
4.
An Acad Bras Cienc ; 95(suppl 2): e20230277, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37909610

RESUMO

Amyotrophic lateral sclerosis (ALS) is a complex and serious neurodegenerative disorder that develops in consequence of the progressive loss of the upper and lower motor neurons. Cases of ALS are classified as sporadic (sALS), or familial (fALS). Over 90% of cases are sALS, while roughly 10% are related to inherited genetic mutations (fALS). Approximately 70% of the genetic mutations that contribute to fALS have been identified. On the other hand, the majority of the sALS cases have an undetermined genetic contributor and few mutations have been described, despite the advanced genetic analysis methods. Also, several factors contribute to the onset and progression of ALS. Numerous lines of evidence indicate that epigenetic changes are linked to aging, as well as neurodegenerative disorders, such as ALS. In most cases, they act as the heritable regulation of transcription by DNA methylation, histone modification and expression of noncoding RNAs. Mechanisms involving aberrant DNA methylation could be relevant to human ALS pathobiology and therapeutic targeting. Despite advances in research to find factors associated with ALS and more effective treatments, this disease remains complex and has low patient survival. Here, we provide a narrative review of the role of DNA methylation for this complex neurodegenerative disorder.


Assuntos
Esclerose Lateral Amiotrófica , Humanos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Metilação de DNA/genética , Mutação/genética
5.
Semin Cancer Biol ; 76: 292-300, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34474152

RESUMO

Post-transcriptional (PtscM) and post-translational (PtrnM) modifications of nucleotides and amino acids are covalent modifications able to change physio-chemical properties of RNAs and proteins. In the ribosome, the adequate assembly of rRNAs and ribosomal protein subunits in the nucleolus ensures suitable translational activity, with protein synthesis tuned according to intracellular demands of energy production, replication, proliferation, and growth. Disruption in the regulatory control of PtscM and PtrnM can impair ribosome biogenesis and ribosome function. Ribosomal impairment may, in turn, impact the synthesis of proteins engaged in functions as varied as telomere maintenance, apoptosis, and DNA repair, as well as intersect with mitochondria and telomerase activity. These cellular processes often malfunction in carcinogenesis and senescence. Here we discuss regulatory mechanisms of PtscMs and PtrnMs on ribosomal function. We also address chemical modification in rRNAs and their impacts on cellular metabolism, replication control, and senescence. Further, we highlight similarities and differences of PtscMs and PtrnMs in ribosomal intermediates during aging and carcinogenesis. Understanding these regulatory mechanisms may uncover critical steps for the development of more efficient oncologic and anti-aging therapies.


Assuntos
Envelhecimento/metabolismo , Neoplasias/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Processamento Pós-Transcricional do RNA/fisiologia , Proteínas Ribossômicas/metabolismo , Animais , Humanos , RNA Ribossômico/metabolismo
6.
Trends Genet ; 35(10): 710-723, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31447250

RESUMO

The multicopy ribosomal DNA (rDNA) array gives origin to the nucleolus, a large nonmembrane-bound organelle that occupies a substantial volume within the cell nucleus. The rDNA/nucleolus has emerged as a coordinating hub in which seemingly disparate cellular functions converge, and from which a variety of cellular and organismal phenotypes emerge. However, the role of the nucleolus as a determinant and organizer of nuclear architecture and other epigenetic states of the genome is not well understood. We discuss the role of rDNA and the nucleolus in nuclear organization and function - from nucleolus-associated domains (NADs) to the regulation of imprinted loci and X chromosome inactivation, as well as rDNA contact maps that anchor and position the rDNA relative to the rest of the genome. The influence of the nucleolus on nuclear organization undoubtedly modulates diverse biological processes from metabolism to cell proliferation, genome-wide gene expression, maintenance of epigenetic states, and aging.


Assuntos
Nucléolo Celular/fisiologia , Núcleo Celular/fisiologia , DNA Ribossômico/genética , Animais , Nucléolo Celular/ultraestrutura , Núcleo Celular/ultraestrutura , DNA Ribossômico/metabolismo , Suscetibilidade a Doenças , Epigênese Genética , Regulação da Expressão Gênica , Humanos
7.
Genome Res ; 29(3): 325-333, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30765617

RESUMO

The ribosomal DNA (rDNA) is the most evolutionarily conserved segment of the genome and gives origin to the nucleolus, an energy intensive nuclear organelle and major hub influencing myriad molecular processes from cellular metabolism to epigenetic states of the genome. The rDNA/nucleolus has been directly and mechanistically implicated in aging and longevity in organisms as diverse as yeasts, Drosophila, and humans. The rDNA is also a significant target of DNA methylation that silences supernumerary rDNA units and regulates nucleolar activity. Here, we introduce an age clock built exclusively with CpG methylation within the rDNA. The ribosomal clock is sufficient to accurately estimate individual age within species, is responsive to genetic and environmental interventions that modulate life-span, and operates across species as distant as humans, mice, and dogs. Further analyses revealed a significant excess of age-associated hypermethylation in the rDNA relative to other segments of the genome, and which forms the basis of the rDNA clock. Our observations identified an evolutionarily conserved marker of aging that is easily ascertained, grounded on nucleolar biology, and could serve as a universal marker to gauge individual age and response to interventions in humans as well as laboratory and wild organisms across a wide diversity of species.


Assuntos
Envelhecimento/genética , Relógios Biológicos/genética , Metilação de DNA , DNA Ribossômico/genética , Evolução Molecular , Animais , Anuros , Nucléolo Celular/genética , Galinhas , Sequência Conservada , Humanos , Camundongos , Ratos
8.
Development ; 146(19)2019 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-31558570

RESUMO

Over the past few years, interest in chromatin and its evolution has grown. To further advance these interests, we organized a workshop with the support of The Company of Biologists to debate the current state of knowledge regarding the origin and evolution of chromatin. This workshop led to prospective views on the development of a new field of research that we term 'EvoChromo'. In this short Spotlight article, we define the breadth and expected impact of this new area of scientific inquiry on our understanding of both chromatin and evolution.


Assuntos
Cromatina/genética , Evolução Molecular , Animais , Genoma , Humanos
9.
Artif Organs ; 46(9): 1833-1846, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35524699

RESUMO

BACKGROUND: Mechanical heart valves (MHV) and its fluid dynamics inside a pulsatile pediatric ventricular assist device (PVAD) can be associated with blood degradation. In this article, flow structures are analyzed and compared by an experimental investigation on the effect of bileaflet MHV positioned at varying angles in the inlet port orifice of a PVAD. METHODS: Time-resolved particle image velocimetry was applied to characterize the internal flow of the device. St Jude Medical bileaftlet valves were used on the inlet orifice and positioned at 0°, 15°, 30°, 45°, 60°, and 90° in relation to the centerline of the device. Three planes with bidimensional velocity magnitude fields were considered in the analysis with visualization of diastolic jets, device wall washing patterns and flow circulation during emptying or systole of the pump. Also, the washing vortex area, and vertical velocity probabilities of regurgitant flows in the inlet valve were evaluated. RESULTS: The results show that a variation in the angle of the MHV at the inlet port produced distinct velocities, fluid structures, and regurgitant flow probabilities within the device. MHV positioned at an angle of 0° generated the strongest inlet jet, larger vortex area during filling, more prominent outgoing flow, and less regurgitation compared to the angles studied. The presence of unfavorable fluid structures, such as small vortices, and/or sudden flow structure interruption, and/or regurgitation, were identified at 45° and 90° angles. CONCLUSIONS: The 0° inlet angle had better outcomes than other angles due to its consistency in the multiple parameters analyzed.


Assuntos
Próteses Valvulares Cardíacas , Coração Auxiliar , Baías , Velocidade do Fluxo Sanguíneo , Criança , Humanos , Modelos Cardiovasculares , Desenho de Prótese , Fluxo Pulsátil
10.
Neurobiol Dis ; 157: 105428, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34153464

RESUMO

Epigenetic clocks are calculated by combining DNA methylation states across select CpG sites to estimate biologic age, and have been noted as the most successful markers of biologic aging to date. Yet, limited research has considered epigenetic clocks calculated in brain tissue. We used DNA methylation states in dorsolateral prefrontal cortex specimens from 721 older participants of the Religious Orders Study and Rush Memory and Aging Project, to calculate DNA methylation age using four established epigenetic clocks: Hannum, Horvath, PhenoAge, GrimAge, and a new Cortical clock. The four established clocks were trained in blood samples (Hannum, PhenoAge, GrimAge) or using 51 human tissue and cell types (Horvath); the recent Cortical clock is the first trained in postmortem cortical tissue. Participants were recruited beginning in 1994 (Religious Orders Study) and 1997 (Memory and Aging Project), and followed annually with questionnaires and clinical evaluations; brain specimens were obtained for 80-90% of participants. Mean age at death was 88.0 (SD 6.7) years. We used linear regression, logistic regression, and linear mixed models, to examine relations of epigenetic clock ages to neuropathologic and clinical aging phenotypes, controlling for chronologic age, sex, education, and depressive symptomatology. Hannum, Horvath, PhenoAge and Cortical clock ages were related to pathologic diagnosis of Alzheimer's disease (AD), as well as to Aß load (a hallmark pathology of Alzheimer's disease). However, associations were substantially stronger for the Cortical than other clocks; for example, each standard deviation (SD) increase in Hannum, Horvath, and PhenoAge clock age was related to approximately 30% greater likelihood of pathologic AD (all p < 0.05), while each SD increase in Cortical age was related to 90% greater likelihood of pathologic AD (odds ratio = 1.91, 95% confidence interval 1.38, 2.62). Moreover, Cortical age was significantly related to other AD pathology (eg, mean tau tangle density, p = 0.003), and to odds of neocortical Lewy body pathology (for each SD increase in Cortical age, odds ratio = 2.00, 95% confidence 1.27, 3.17), although no clocks were related to cerebrovascular neuropathology. Cortical age was the only epigenetic clock significantly associated with the clinical phenotypes examined, from dementia to cognitive decline (5 specific cognitive systems, and a global cognitive measure averaging 17 tasks) to Parkinsonian signs. Overall, our findings provide evidence of the critical necessity for bespoke clocks of brain aging for advancing research to understand, and eventually prevent, neurodegenerative diseases of aging.


Assuntos
Envelhecimento/genética , Transtornos Cerebrovasculares/patologia , Metilação de DNA/genética , Córtex Pré-Frontal Dorsolateral/metabolismo , Epigênese Genética/genética , Doenças Neurodegenerativas/patologia , Idoso de 80 Anos ou mais , Envelhecimento/patologia , Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Encéfalo/metabolismo , Encéfalo/patologia , Transtornos Cerebrovasculares/fisiopatologia , Cognição , Ilhas de CpG/genética , Epigenômica , Feminino , Humanos , Masculino , Doenças Neurodegenerativas/fisiopatologia , Fenótipo
11.
Respir Res ; 22(1): 73, 2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33637076

RESUMO

BACKGROUND: The mechanism for spread of SARS-CoV-2 has been attributed to large particles produced by coughing and sneezing. There is controversy whether smaller airborne particles may transport SARS-CoV-2. Smaller particles, particularly fine particulate matter (≤ 2.5 µm in diameter), can remain airborne for longer periods than larger particles and after inhalation will penetrate deeply into the lungs. Little is known about the size distribution and location of airborne SARS-CoV-2 RNA. METHODS: As a measure of hospital-related exposure, air samples of three particle sizes (> 10.0 µm, 10.0-2.5 µm, and ≤ 2.5 µm) were collected in a Boston, Massachusetts (USA) hospital from April to May 2020 (N = 90 size-fractionated samples). Locations included outside negative-pressure COVID-19 wards, a hospital ward not directly involved in COVID-19 patient care, and the emergency department. RESULTS: SARS-CoV-2 RNA was present in 9% of samples and in all size fractions at concentrations of 5 to 51 copies m-3. Locations outside COVID-19 wards had the fewest positive samples. A non-COVID-19 ward had the highest number of positive samples, likely reflecting staff congregation. The probability of a positive sample was positively associated (r = 0.95, p < 0.01) with the number of COVID-19 patients in the hospital. The number of COVID-19 patients in the hospital was positively associated (r = 0.99, p < 0.01) with the number of new daily cases in Massachusetts. CONCLUSIONS: More frequent detection of positive samples in non-COVID-19 than COVID-19 hospital areas indicates effectiveness of COVID-ward hospital controls in controlling air concentrations and suggests the potential for disease spread in areas without the strictest precautions. The positive associations regarding the probability of a positive sample, COVID-19 cases in the hospital, and cases in Massachusetts suggests that hospital air sample positivity was related to community burden. SARS-CoV-2 RNA with fine particulate matter supports the possibility of airborne transmission over distances greater than six feet. The findings support guidelines that limit exposure to airborne particles including fine particles capable of longer distance transport and greater lung penetration.


Assuntos
COVID-19/epidemiologia , COVID-19/transmissão , Hospitais de Veteranos/tendências , Tamanho da Partícula , SARS-CoV-2/isolamento & purificação , Boston/epidemiologia , COVID-19/diagnóstico , Serviço Hospitalar de Emergência/tendências , Humanos , Unidades de Terapia Intensiva/tendências
12.
PLoS Genet ; 14(3): e1007258, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29570716

RESUMO

The repeated rDNA array gives rise to the nucleolus, an organelle that is central to cellular processes as varied as stress response, cell cycle regulation, RNA modification, cell metabolism, and genome stability. The rDNA array is also responsible for the production of more than 70% of all cellular RNAs (the ribosomal RNAs). The rRNAs are produced from two sets of loci: the 5S rDNA array resides exclusively on human chromosome 1 while the 45S rDNA arrays reside on the short arm of five human acrocentric chromosomes. These critical genome elements have remained unassembled and have been excluded from all Hi-C analyses to date. Here we built the first high resolution map of 5S and 45S rDNA array contacts with the rest of the genome combining over 15 billion Hi-C reads from several experiments. The data enabled sufficiently high coverage to map rDNA-genome interactions with 1MB resolution and identify rDNA-gene contacts. The map showed that the 5S and 45S arrays display preferential contact at common sites along the genome but are not themselves sufficiently close to yield 5S-45S Hi-C contacts. Ribosomal DNA contacts are enriched in segments of closed, repressed, and late replicating chromatin, as well as CTCF binding sites. Finally, we identified functional categories whose dispersed genes coalesced in proximity to the rDNA arrays or instead avoided proximity with the rDNA arrays. The observations further our understanding of the spatial localization of rDNA arrays and their contribution to the architecture of the cell nucleus.


Assuntos
DNA Ribossômico/genética , Análise de Sequência com Séries de Oligonucleotídeos , Sítios de Ligação , Cromatina/metabolismo , Cromossomos Humanos Par 1 , DNA Ribossômico/química , DNA Ribossômico/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genoma Humano , Instabilidade Genômica , Humanos
13.
J Proteome Res ; 19(11): 4496-4515, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-32686424

RESUMO

Congenital Zika syndrome was first described due to increased incidence of congenital abnormalities associated with Zika virus (ZIKV) infection. Since the eye develops as part of the embryo central nervous system (CNS) structure, it becomes a specialized compartment able to display symptoms of neurodegenerative diseases and has been proposed as a noninvasive approach to the early diagnosis of neurological diseases. Ocular lesions result from defects that occurred during embryogenesis and can become apparent in newborns exposed to ZIKV. Furthermore, the absence of microcephaly cannot exclude the occurrence of ocular lesions and other CNS manifestations. Considering the need for surveillance of newborns and infants with possible congenital exposure, we developed a method termed cellular imprinting proteomic assay (CImPA) to evaluate the ocular surface proteome specific to infants exposed to ZIKV during gestation compared to nonexposure. CImPA combines surface cells and fluid capture using membrane disks and a large-scale quantitative proteomics approach, which allowed the first-time report of molecular alterations such as neutrophil degranulation, cell death signaling, ocular and neurological pathways, which are associated with ZIKV infection with and without the development of congenital Zika syndrome, CZS. Particularly, infants exposed to ZIKV during gestation and without early clinical symptoms could be detected using the CImPA method. Lastly, this methodology has broad applicability as it could be translated in the study of several neurological diseases to identify novel diagnostic biomarkers. Data are available via ProteomeXchange with identifier PXD014038.


Assuntos
Microcefalia , Complicações Infecciosas na Gravidez , Infecção por Zika virus , Zika virus , Feminino , Humanos , Lactente , Recém-Nascido , Gravidez , Proteômica , Infecção por Zika virus/diagnóstico
14.
PLoS Genet ; 13(9): e1006994, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28880866

RESUMO

Ribosomal RNAs (rRNAs) are transcribed from two multicopy DNA arrays: the 5S ribosomal DNA (rDNA) array residing in a single human autosome and the 45S rDNA array residing in five human autosomes. The arrays are among the most variable segments of the genome, exhibit concerted copy number variation (cCNV), encode essential components of the ribosome, and modulate global gene expression. Here we combined whole genome data from >700 tumors and paired normal tissues to provide a portrait of rDNA variation in human tissues and cancers of diverse mutational signatures, including stomach and lung adenocarcinomas, ovarian cancers, and others of the TCGA panel. We show that cancers undergo coupled 5S rDNA array expansion and 45S rDNA loss that is accompanied by increased estimates of proliferation rate and nucleolar activity. These somatic changes in rDNA CN occur in a background of over 10-fold naturally occurring rDNA CN variation across individuals and cCNV of 5S-45S arrays in some but not all tissues. Analysis of genetic context revealed associations between cancer rDNA CN amplification or loss and the presence of specific somatic alterations, including somatic SNPs and copy number gain/losses in protein coding genes across the cancer genome. For instance, somatic inactivation of the tumor suppressor gene TP53 emerged with a strong association with coupled 5S expansion / 45S loss in several cancers. Our results uncover frequent and contrasting changes in the 5S and 45S rDNA along rapidly proliferating cell lineages with high nucleolar activity. We suggest that 5S rDNA amplification facilitates increased proliferation, nucleolar activity, and ribosomal synthesis in cancer, whereas 45S rDNA loss emerges as a byproduct of transcription-replication conflict in rapidly replicating tumor cells. The observations raise the prospects of using the rDNA arrays as re-emerging targets for the design of novel strategies in cancer therapy.


Assuntos
Proliferação de Células/genética , Variações do Número de Cópias de DNA/genética , DNA Ribossômico/genética , Neoplasias/genética , Nucléolo Celular/genética , Genoma Humano , Humanos , Hibridização in Situ Fluorescente , Neoplasias/patologia , Polimorfismo de Nucleotídeo Único/genética , RNA Ribossômico/genética , RNA Ribossômico 5S/genética
15.
Artigo em Inglês | MEDLINE | ID: mdl-31084241

RESUMO

Hexavalent chromium [Cr (VI)] contributes a significant health risk and causes a number of chronic diseases and cancers. While the genotoxic and carcinogenic effects of hexavalent chromium exposure are explicit and better-characterized, the exact mechanism underlying the carcinogenic process of Cr (VI) is still a matter of debate. In recent years, studies have shown that epigenetic modifications, especially DNA methylation, may play a significant role in Cr (VI)-induced carcinogenesis. The aim of this review is to summarize our understanding regarding the effects of Cr (VI) on global and gene-specific DNA methylation.


Assuntos
Carcinógenos Ambientais/toxicidade , Cromo/toxicidade , Fenômenos Bioquímicos , Dano ao DNA , Metilação de DNA , Epigênese Genética , Humanos
16.
BMC Evol Biol ; 18(1): 2, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29329524

RESUMO

BACKGROUND: Neo-sex chromosome systems arose independently multiple times in evolution, presenting the remarkable characteristic of repetitive DNAs accumulation. Among grasshoppers, occurrence of neo-XY was repeatedly noticed in Melanoplinae. Here we analyzed the most abundant tandem repeats of R. bergii (2n = 22, neo-XY♂) using deep Illumina sequencing and graph-based clustering in order to address the neo-sex chromosomes evolution. RESULTS: The analyses revealed ten families of satDNAs comprising about ~1% of the male genome, which occupied mainly C-positive regions of autosomes. Regarding the sex chromosomes, satDNAs were recorded within centromeric or interstitial regions of the neo-X chromosome and four satDNAs occurred in the neo-Y, two of them being exclusive (Rber248 and Rber299). Using a combination of probes we uncovered five well-defined cytological variants for neo-Y, originated by multiple paracentric inversions and satDNA amplification, besides fragmented neo-Y. These neo-Y variants were distinct in frequency between embryos and adult males. CONCLUSIONS: The genomic data together with cytogenetic mapping enabled us to better understand the neo-sex chromosome dynamics in grasshoppers, reinforcing differentiation of neo-X and neo-Y and revealing the occurrence of multiple additional rearrangements involved in the neo-Y evolution of R. bergii. We discussed the possible causes that led to differences in frequency for the neo-Y variants between embryos and adults. Finally we hypothesize about the role of DNA satellites in R. bergii as well as putative historical events involved in the evolution of the R. bergii neo-XY.


Assuntos
DNA Satélite/genética , Evolução Molecular , Gafanhotos/genética , Análise de Sequência de DNA , Cromossomo X/genética , Cromossomo Y/genética , Animais , Feminino , Hibridização in Situ Fluorescente , Masculino , Metáfase/genética
17.
Proc Natl Acad Sci U S A ; 112(8): 2485-90, 2015 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-25583482

RESUMO

Tandemly repeated ribosomal DNA (rDNA) arrays are among the most evolutionary dynamic loci of eukaryotic genomes. The loci code for essential cellular components, yet exhibit extensive copy number (CN) variation within and between species. CN might be partly determined by the requirement of dosage balance between the 5S and 45S rDNA arrays. The arrays are nonhomologous, physically unlinked in mammals, and encode functionally interdependent RNA components of the ribosome. Here we show that the 5S and 45S rDNA arrays exhibit concerted CN variation (cCNV). Despite 5S and 45S rDNA elements residing on different chromosomes and lacking sequence similarity, cCNV between these loci is strong, evolutionarily conserved in humans and mice, and manifested across individual genotypes in natural populations and pedigrees. Finally, we observe that bisphenol A induces rapid and parallel modulation of 5S and 45S rDNA CN. Our observations reveal a novel mode of genome variation, indicate that natural selection contributed to the evolution and conservation of cCNV, and support the hypothesis that 5S CN is partly determined by the requirement of dosage balance with the 45S rDNA array. We suggest that human disease variation might be traced to disrupted rDNA dosage balance in the genome.


Assuntos
Variações do Número de Cópias de DNA/genética , DNA Ribossômico/genética , Genoma/genética , Animais , Compostos Benzidrílicos/toxicidade , Cromossomos Humanos Par 1/genética , Variações do Número de Cópias de DNA/efeitos dos fármacos , Feminino , Loci Gênicos , Genoma Humano/genética , Genótipo , Humanos , Masculino , Camundongos , Linhagem , Fenóis/toxicidade , Polimorfismo de Nucleotídeo Único/genética , RNA Ribossômico/genética , RNA Ribossômico 5S/genética
18.
Proc Biol Sci ; 284(1869)2017 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-29237855

RESUMO

Y chromosomes typically harbour a small number of genes and an abundance of repetitive sequences. In Drosophila, the Y chromosome comprises multimegabase long segments of repetitive DNA and a handful of protein-coding genes. In mammals, the Y chromosome also harbours a disproportionally high abundance of repeats. Here, we built on a Drosophila melanogaster model in which the Y chromosome is decoupled from sexual determination. Genotypes were genetically identical for the autosomes, X chromosome, and mitochondria, but differ by the presence or dose of the Y chromosome. Addition of an extra Y chromosome had limited impact in males. However, the presence of a Y chromosome in females induced a disproportionate response in genes expressed in the ovaries as well as genes encoded by the mitochondrial genome. Furthermore, the data revealed significant consequences of Y chromosome presence in larvae neuronal tissue. This included the repression of genes implicated in reproductive behaviour, courtship, mating and synaptic function. Our findings exhibit the Y chromosome as a hotspot for sex-specific adaptation. They suggest roles for natural selection on Y-linked genetic elements exerting impact on sex-specific tissues as well as somatic tissues shared by males and females.


Assuntos
Drosophila melanogaster/genética , Neurônios/fisiologia , Comportamento Sexual Animal , Cromossomo Y/genética , Animais , Drosophila melanogaster/crescimento & desenvolvimento , Feminino , Genótipo , Larva/genética , Larva/crescimento & desenvolvimento , Masculino , Processos de Determinação Sexual
19.
Tumour Biol ; 37(10): 13029-13038, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27468720

RESUMO

Tumorigenesis is a multistep process involving genetic and epigenetic alterations that drive somatic evolution from normal human cells to malignant derivatives. Collectively, genetic and epigenetic alterations might be combined into biomarkers for the assessment of risk, the detection of early stage tumors, and accurate tumor characterization before and after treatment. Recent efforts have provided systematic approaches to cancer genomics through the application of massive sequencing of specific tumor types. Here, we review biomarkers of genome instability and epigenetics. Cancer evolvability and adaptation emerge through genetic and epigenetic lesions of a variety of sizes and qualities-from point mutations and small insertions/deletions to large-scale chromosomal rearrangements, alterations in whole chromosome copy number, preferential allelic expression of cancer risk alleles, and mechanisms that increase tumor mutation rates. We also review specific epigenetic mechanisms that facilitate or hinder tumor adaptation, including DNA methylation, histone modification, nucleosome remodeling, transcription factor activity, and small non-coding RNAs. Given the complexity of the carcinogenic process, the challenge ahead will be to interpret disparate signals across hundreds of genes and summarize these signals into a single actionable diagnosis that translates into specific treatments. Another challenge is to refine preventive efforts through the identification of epigenetic processes that mediate increased cancer rates in individuals exposed to sources of toxic environmental stress and pollution, specially through development and early childhood.


Assuntos
Biomarcadores/análise , Epigênese Genética , Instabilidade Genômica , Neoplasias/diagnóstico , Neoplasias/genética , Humanos
20.
Proc Natl Acad Sci U S A ; 109(25): 9941-6, 2012 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-22665801

RESUMO

Although the Drosophila Y chromosome is degenerated, heterochromatic, and contains few genes, increasing evidence suggests that it plays an important role in regulating the expression of numerous autosomal and X-linked genes. Here we use 15 Y chromosomes originating from a single founder 550 generations ago to study the role of the Y chromosome in regulating rRNA gene transcription, position-effect variegation (PEV), and the link among rDNA copy number, global gene expression, and chromatin regulation. Based on patterns of rRNA gene transcription indicated by transcription of the retrotransposon R2 that specifically inserts into the 28S rRNA gene, we show that X-linked rDNA is silenced in males. The silencing of X-linked rDNA expression by the Y chromosome is consistent across populations and independent of genetic background. These Y chromosomes also vary more than threefold in rDNA locus size and cause dramatically different levels of PEV suppression. The degree of suppression is negatively associated with the number and fraction of rDNA units without transposon insertions, but not with total rDNA locus size. Gene expression profiling revealed hundreds of differentially expressed genes among these Y chromosome introgression lines, as well as a divergent global gene expression pattern between the low-PEV and high-PEV flies. Our findings suggest that the Y chromosome is involved in diverse phenomena related to transcriptional regulation including X-linked rDNA silencing and suppression of PEV phenotype. These results further expand our understanding of the role of the Y chromosome in modulating global gene expression, and suggest a link with modifications of the chromatin state.


Assuntos
Cromatina/genética , DNA Ribossômico/genética , Drosophila/genética , Cromossomo Y , Animais , Sequência de Bases , Primers do DNA , Masculino , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA