Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Zool B Mol Dev Evol ; 334(5): 280-293, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32483872

RESUMO

Chinese sturgeon (Acipenser sinensis) with an evolutionary history of over 200 million years, has a long lifespan, and an extremely late and asynchronous sexual maturation (8-18 years for males and 14-26 years for females), resulting in the difficulty of mature adult culture. However, little is known about the regulatory mechanisms of the transition among ovarian maturation stages in the Chinese sturgeon. We performed de novo transcriptome sequencing of the Chinese sturgeon at different ovarian maturation stages (FII, FIII, and FIV). The number of differentially expressed genes (DEGs) between FII and FIII/FIV (33,517/34,217) was more than that between FIII and FIV (22,123), suggesting that the transition from FII to FIII/FIV is more important than that from FIII to FIV for ovarian maturation. The number of upregulated genes was more than that of the downregulated genes, suggesting that increased gene expression was involved in the transition from FII to FIII/FIV. The representative pathways of DEGs were steroid biosynthesis, fatty acid biosynthesis, fatty acid elongation, glycerolipid metabolism, biosynthesis of unsaturated fatty acid, and α-linolenic acid metabolism. The differential expressions from the transcriptome sequencing were validated with real-time reverse-transcription polymerase chain reaction. We also found 13 genes in sexual development, female sex determination, gonadal development, ovarian maturation, ovarian follicle development, and oocyte development pathways, which were differently expressed among fish at FII, FIII, and FIV. We suggest that enhanced synthesis of steroid, unsaturated fatty acid, and α-linolenic acid may contribute to ovarian maturation of the Chinese sturgeon. These potential determinants provide a glimpse of the molecular architecture of ovary development in sturgeons.


Assuntos
Peixes/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Ovário/crescimento & desenvolvimento , Ovário/metabolismo , Animais , Feminino , Transcriptoma
2.
Br J Nutr ; 122(11): 1230-1241, 2019 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-31782378

RESUMO

Chinese sturgeon (Acipenser sinensis) is an endangered species, listed as a grade I protected animal in China. The females rarely successfully develop their gonads from stage II to III in captivity, which handicaps the propagation of cultured Chinese sturgeon. The present study aimed to understand the effects of dietary lipid level on the ovarian development and the related regulation mechanism in female Chinese sturgeon. A 24-month feeding trial was conducted with 10-year-old Chinese sturgeons with ovaries at the developmental stage II, with three experimental diets containing 10, 14 and 18 % lipids. Ovary, muscle and serum samples were collected at four time points (6, 12, 18 and 24 months) for further analyses. Serum metabolomics and ovary transcriptomics analyses were conducted at 18 months. Results showed that only the 18 % lipid diet promoted ovary development to stage IV. Oocytes at stage II in this group also exhibited higher diameter and more lipid droplets. Serum TAG content in the 18 % group was significantly higher than in 10 and 14 % groups (both at 12 and 18 months). Oestradiol content in the 14 % group was significantly higher than in 10 and 18 % groups, except at 24 months. Metabolomic and transcriptomic results indirectly indicated that 14 % of dietary lipids benefited steroid hormone synthesis, while 18 % lipid facilitated arachidonic acid metabolism, cholesterol biosynthesis and vitellogenesis, although serum cholesterol content did not vary with dietary lipid level. In conclusion, 18 % dietary lipid is the optimal level for improving gonad development of female Chinese sturgeon.


Assuntos
Ácido Araquidônico/metabolismo , Colesterol/biossíntese , Gorduras na Dieta/administração & dosagem , Peixes/metabolismo , Hormônios Esteroides Gonadais/biossíntese , Ovário/crescimento & desenvolvimento , Animais , Aquicultura , China , Dieta , Espécies em Perigo de Extinção , Estradiol/sangue , Feminino , Expressão Gênica , Perfilação da Expressão Gênica/veterinária , Metabolômica , Músculos/anatomia & histologia , Ovário/química , Triglicerídeos/sangue
3.
Gen Comp Endocrinol ; 245: 36-43, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27497707

RESUMO

Long lifespan and late maturation make it difficult to establish gamete maturity and breeding age of captive endangered Chinese sturgeon, Acipenser sinensis. This greatly handicaps timely breeding and future conservation stocking efforts. We used ultrasound imagery and sex steroids to determine the gender and gonadal maturity stage of captive Chinese sturgeon (age, 10-17years old). The echogenicity of the reproductive organs and the respective morphology of the gonads were described and two quantitative parameters po (proportion of the ovary to the entire reproductive organs) and d (thickness of the reproductive organs) were measured to characterize sex and maturity stage of Chinese sturgeon. Females were accordingly placed fish into several categories: FII (FII-, FII, FII+), FIII (FIII, FIII+) and FIV (FIV, FIV+) and FVI and males as MII, MIII, MIV, MV and MVI. The accuracy of gender and maturity stage determination provided by ultrasonographic methods was 72.7% for FII- ovary (n=11) and 76.2% for MII testis (n=42). Accuracy of sex and maturity determination using only serum sex steroid of testosterone (T) and estradiol-17ß (E2) was low (58-73%, depending on maturity stage). However, when the two methods were used together, accuracy increased sharply, especially for immature (II stage) females. In summary, of 151 Chinese sturgeon, whose sex and maturity stage were independently confirmed, 88.1% (n=133), 62.9% (n=95), and 96.7% (n=146) were successfully sexed and staged using ultrasound, sex steroids, or both methods, respectively. The results provide reliable non-invasive techniques for determining sex and gonadal maturation of captive Chinese sturgeon. These methods can track individual gonad characteristics over multi-year reproductive cycles, which will assist captive broodstock management, artificial reproduction, and future conservation stocking.


Assuntos
Estradiol/sangue , Peixes/crescimento & desenvolvimento , Peixes/fisiologia , Ovário/crescimento & desenvolvimento , Maturidade Sexual/fisiologia , Testículo/crescimento & desenvolvimento , Animais , Feminino , Peixes/sangue , Masculino , Ovário/fisiologia , Reprodução , Análise para Determinação do Sexo , Testículo/fisiologia , Testosterona/sangue , Ultrassonografia
4.
Nucleic Acids Res ; 43(10): 5081-98, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25897119

RESUMO

Hypoxia-inducible factor (HIF)-1α and HIF-2α are the main regulators of cellular responses to hypoxia. Post-translational modifications of HIF-1α and 2α are necessary to modulate their functions. The methylation of non-histone proteins by Set7, an SET domain-containing lysine methyltransferase, is a novel regulatory mechanism to control cell protein function in response to various cellular stresses. In this study, we show that Set7 methylates HIF-1α at lysine 32 and HIF-2α at lysine K29; this methylation inhibits the expression of HIF-1α/2α targets by impairing the occupancy of HIF-α on hypoxia response element of HIF target gene promoter. Set7-null fibroblasts and the cells with shRNA-knocked down Set7 exhibit upregulated HIF target genes. Set7 inhibitor blocks HIF-1α/2α methylation to enhance HIF target gene expression. Set7-null fibroblasts and the cells with shRNA-knocked down Set7 or inhibition of Set7 by the inhibitor subjected to hypoxia display an increased glucose uptake and intracellular adenosine triphosphate levels. These findings define a novel modification of HIF-1α/2α and demonstrate that Set7-medited lysine methylation negatively regulates HIF-α transcriptional activity and HIF-1α-mediated glucose homeostasis.


Assuntos
Regulação da Expressão Gênica , Histona-Lisina N-Metiltransferase/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Hipóxia Celular , Linhagem Celular , Células Cultivadas , Glucose/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/química , Lisina/metabolismo , Metilação , Camundongos , Transdução de Sinais , Transcrição Gênica
5.
Antioxidants (Basel) ; 13(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38671869

RESUMO

Currently, the effects of dietary levels of n-3 highly unsaturated fatty acids (HUFAs) on the growth performance, antioxidant capacity, immunity, and serum oxylipin profiles of female F2-generation Yangtze sturgeon remain unknown. A total of 75 Yangtze sturgeons, an endangered freshwater fish species, with an average body weight of 3.60 ± 0.83 kg, were randomly allocated to 15 concrete pools, with each dietary group represented by 5 fish per pool. The fish were fed five different experimental diets containing various levels of n-3 HUFAs (0.5%, 1.0%, 1.5%, 2.0%, and 2.4%). After a feeding period of 5 months, no significant differences in the growth performances of the fish were observed among the five dietary groups (p > 0.05). However, we did note that the serum levels of low-density lipoprotein cholesterol (LDL-C), triglycerides (TGs), and total cholesterol (TCHO) exhibited a marked increase in the fish that consumed higher dietary n-3 HUFA levels (p < 0.05). Conversely, alkaline phosphatase (ALP) activities showed a notable decrease as dietary n-3 HUFA levels increased (p < 0.05). Serum antioxidant indices, such as the activity levels of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), were significantly higher in the 2.4% HUFA group compared to the 0.5% HUFA group. Additionally, muscle antioxidant indices, including total antioxidant capacity (T-AOC), catalase (CAT), and SOD activity, exhibited notable increases as dietary n-3 HUFA levels increased (p < 0.05). Furthermore, there was a decrease in malondialdehyde (MDA) levels as dietary n-3 HUFA levels increased (p < 0.05). In relation to immune indices, only serum immunoglobulin M (IgM) and muscle complement 3 (C3) were found to be influenced by dietary n-3 HUFA levels (p < 0.05). A total of 80 oxylipins were quantified, and our subsequent K-means cluster analysis resulted in the classification of 62 oxylipins into 10 subclasses. Among the different n-3 HUFA diets, a total of 14 differential oxylipins were identified in the sera. These findings demonstrate that dietary supplementation with n-3 HUFAs exceeding a 1.0% level can enhance antioxidant capacity and regulate serum lipid metabolism, potentially through modulation of oxylipins derived from ARA, DHA, and EPA. These insights provide novel perspectives on the mechanisms underlying these observations.

6.
Animals (Basel) ; 13(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38067041

RESUMO

Brachymystax tsinlingensis Li is an endangered cold-water salmonid fish native to China. This study aimed to identify sex-related genes and biological pathways via gonadal transcriptome sequencing of B. tsinlingensis Li. A total of 167,904 unigenes were identified with an average length of 836 bp and an N50 of 1452 bp, of which 84,977 (50.61%) unigenes were successfully annotated in six major databases. Comparative transcriptome analysis identified 22,864 differentially expressed genes (DEGs), of which 17,231 were up-regulated (male-biased genes, mDEGs) and 5633 were down-regulated (female-biased genes, fDEGs). Several DEGs associated with gonadal development were found through Gene Ontology enrichment analysis, such as ccnb1, zp3, bmp15, dmrt1, and psmc3ip. Signaling pathways related to gonadal development were found to be enriched through analysis using the Kyoto Encyclopedia of Genes and Genomes Pathway database, such as genes involves in base excision repair, the notch signaling pathway, neuroactive ligand-receptor interaction, the VEGF signaling pathway, and the estrogen signaling pathway. In addition, mRNA expression levels of 19 DEGs were determined to validate the reliability of the transcriptomic data by quantitative real-time polymerase chain reaction. These results revealed genes and signaling pathways potentially involved in gonadal development in B. tsinlingensis Li and provided basic molecular data for future research on reproductive regulation and breeding of B. tsinlingensis Li.

7.
Front Microbiol ; 14: 1293342, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38274749

RESUMO

Aquatic wildlife health assessment is critically important for aquatic wildlife conservation. However, the health assessment of aquatic wildlife (especially aquatic wild animals) is difficult and often accompanied by invasive survey activities and delayed observability. As there is growing evidence that aquatic environmental microbiota could impact the health status of aquatic animals by influencing their symbiotic microbiota, we propose a non-invasive method to monitor the health status of wild aquatic animals using the environmental microbiota health index (microHI). However, it is unknown whether this method is effective for different ecotype groups of aquatic wild animals. To answer this question, we took a case study in the middle Yangtze River and studied the water environmental microbiota and fish gut microbiota at the fish community level, population level, and ecotype level. The results showed that the gut microHI of the healthy group was higher than that of the unhealthy group at the community and population levels, and the overall gut microHI was positively correlated with the water environmental microHI, whereas the baseline gut microHI was species-specific. Integrating these variations in four ecotype groups (filter-feeding, scraper-feeding, omnivorous, and carnivorous), only the gut microHI of the carnivorous group positively correlated with water environmental microHI. Alcaligenaceae, Enterobacteriaceae, and Achromobacter were the most abundant groups with health-negative-impacting phenotypes, had high positive correlations between gut sample group and environment sample group, and had significantly higher abundance in unhealthy groups than in healthy groups of carnivorous, filter-feeding, and scraper-feeding ecotypes. Therefore, using water environmental microHI to indicate the health status of wild fish is effective at the community level, is effective just for carnivorous fish at the ecotype level. In the middle Yangtze River, Alcaligenaceae, Enterobacteriaceae (family level), and Achromobacter (genus level) were the key water environmental microbial groups that potentially impacted wild fish health status. Of course, more data and research that test the current hypothesis and conclusion are encouraged.

8.
Mol Biol Rep ; 39(4): 4647-53, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21986641

RESUMO

Chinese sturgeon (Acipenser sinensis) is a rare and endangered species and also an important resource for the sturgeon aquaculture industry, however, a few genes have been identified in this species. We report here construction of a pituitary cDNA library from a 24 years old female Chinese sturgeon just after its spawning, and obtained 2,025 ESTs from the library. 885 unique sequences were identified, which were categorized into 12 functional groups. More than half of the unique sequences (57%) do not match with annotated sequences in the public databases. Three of these novel genes were further identified. Notably, a full-length of cDNA (1,143 bp) encoding somatolactin of 232 amino acids was identified. Phylogenetic analysis showed 97% amino acid identity with White sturgeon somatolactin. RT-PCR analysis indicated that the somatolactin mRNA was only detected in pituitary. Pituitary-specific expression of the somatolactin suggested that the protein may play important physiological functions in pituitary-endocrine system of the Chinese sturgeon.


Assuntos
Bases de Dados Genéticas , Etiquetas de Sequências Expressas , Proteínas de Peixes/genética , Peixes/genética , Glicoproteínas/genética , Hipófise/metabolismo , Hormônios Hipofisários/genética , Sequência de Aminoácidos , Animais , China , DNA Complementar/genética , Feminino , Proteínas de Peixes/química , Perfilação da Expressão Gênica , Glicoproteínas/química , Dados de Sequência Molecular , Especificidade de Órgãos/genética , Filogenia , Hormônios Hipofisários/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência
9.
Carbohydr Res ; 522: 108685, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36209515

RESUMO

To compare the structural properties and biological activities of chondroitin sulfate (CS) in two different tissues of Chinese sturgeon (Acipenser sinensis) and Russian sturgeon (Acipenser gueldenstaedti), we extracted their backbone cartilage CS (Cart-CS) and notochord CS (Noto-CS), and analyzed the CS structural properties using chromatographic and spectroscopic methods. The molecular weights of Chinese sturgeon Cart-CS and Noto-CS were 54.7 and 25.4 kDa, respectively, and the molecular weights of Russian sturgeon were 50.0 and 38.4 kDa, respectively. The disaccharide composition results showed that Cart-CS was mainly composed of CS-C, while Noto-CS was almost composed of pure CS-A. The antioxidant activity of sturgeon CS and its effect on collagen fibril formation were discussed. Sturgeon CS exhibited higher antioxidant activity than shark and bovine CSs. Sturgeon CS inhibited the self-assemble of type I collagen into fibrils. The inhibition effect of Cart-CS was higher than that of Noto-CS. The high value-added utilization of Cart-CS and Noto-CS will increase the value of sturgeon by-products. Furthermore, the disaccharide composition of CS in sturgeon depends on tissues of origin, but not on species. It means that the CS of Chinese sturgeon can be substituted by the CS of other commercial sturgeon. That will contribute to the protection of endangered species of Chinese sturgeon from illegal fishing and increase the value of commercial sturgeon by-products.


Assuntos
Sulfatos de Condroitina , Notocorda , Animais , Bovinos , Sulfatos de Condroitina/farmacologia , Sulfatos de Condroitina/química , Antioxidantes/farmacologia , Dissacarídeos , China , Peixes
10.
Exp Ther Med ; 21(6): 574, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33850546

RESUMO

MicroRNAs (miRs) participate in the development of several cancers. miR-361-5p suppresses the proliferation of hepatocellular carcinoma (HCC) cells. However, its function and potential underlying mechanism of action in the chemoresistance of HCC remains unknown. Therefore, cisplatin (DDP)-resistant HCC cells were used to study the role and potential mechanism of action of miR-361-5p in HCC resistance to chemotherapy. TargetScan software and dual-luciferase reporter assays were used to determine whether MAPK kinase kinase 9 (MAP3K9) is a target gene of miR-361-5p. Subsequently, reverse transcription-quantitative PCR and western blot analyses demonstrated that miR-361-5p mimic decreased MAP3K9 expression levels in Huh7 cells and this change was reversed by transfection with the MAP3K9-plasmid. In addition, compared with THLE-2 cells, miR-361-5p was downregulated, while MAP3K9 was upregulated in Huh7 cells. MAP3K9 also reversed the miR-361-5p-induced HCC cell apoptosis. A DDP-resistant cell line, Huh7/DDP, was established and MTT analysis revealed that the IC50 value of DDP treatment in Huh7/DDP cells was higher compared with that in Huh7 cells. miR-361-5p expression was lower in Huh7/DDP cells compared with that in Huh7 cells. Similarly, miR-361-5p downregulated the expression levels of MAP3K9 in Huh7/DDP cells. Furthermore, MAP3K9 reversed miR-361-5p-induced sensitivity of Huh7/DDP cells to DDP and miR-361-5p induced Huh7/DDP cell apoptosis. Therefore, the findings of the present study demonstrated that the miR-361-5p/MAP3K9 axis may serve as a new potential biomarker and therapeutic target for DDP-resistant HCC.

11.
Theriogenology ; 162: 59-66, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33444917

RESUMO

Ovary development of Chinese sturgeon (Acipenser sinensis) in controlled breeding has been reported to respond to dietary lipid levels. However, the corresponding molecular regulatory mechanism about ovary development of Chinese sturgeon is still unclear. To elucidate the molecular mechanism of vitellogenic deposition and hydrolysis, six key genes, namely, vtgr (vitellogenin receptor), atp6v1c1 (Vacuolar H+-ATPase subunit c1), atp6v1h (Vacuolar H+-ATPase subunit h), ctsb (cathepsin B), ctsd (cathepsin D) and ctsl (cathepsin L) involved in vitellogenic deposition and hydrolysis of Chinese sturgeon were cloned and characterized, and their spatio-temporal mRNA expression profiles as well as transcriptional responses to dietary lipid level were investigated. The full-length cDNA sequences of these six genes showed similar domain structure to their respective orthologous genes from other vertebrates. Tissue-specific expression patterns of these genes were observed in ovary, liver, muscle, spleen, brain, gill, intestine, heart, stomach and kidney. Ovarian expression level of vtgr was the highest in stage II, and ctsl expression was the highest in stage IV, while the mRNA expressions of other 4 genes were the highest in stage III. The increase of dietary lipid level promoted ovary development and elevated the expressions of vtgr, atp6v1c1, atp6v1h, ctsb and ctsd in the ovary. The results of the present study indicated that these genes are crucial for vitellogenic deposition, and provided a preliminary understanding on the molecular regulation of vitellogenic deposition and hydrolysis during ovary development of Chinese sturgeon.


Assuntos
Peixes , Ovário , Animais , China , Feminino , Peixes/genética , Hidrólise , Diferenciação Sexual
12.
Front Microbiol ; 11: 488, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32373077

RESUMO

As one of the most important tool for biodiversity restoration and endangered species conservation, reintroduction has been implemented worldwide. In reintroduction projects, prerelease conditioning could effectively increase postrelease fitness and survival by improving animals' adaptation to transformation from artificial to natural environments. However, how early-life diet training affects individuals' adaptation, fitness, and survival after release remains largely unknown. We hypothesized that early-life diet training would adjust the host's gut microbial community, the gut microbial community would influence the host's diet preference, and the host's diet preference would impact its adaptation to diet provision transformation and then determine postrelease fitness and survival. To verify this hypothesis, we investigated the growth characteristics and gut microbes of Yangtze sturgeon (Acipenser dabryanus) trained with natural and formula diets at both the prerelease and postrelease stages. The results showed that (1) the gut microbial communities of the individuals trained with a natural diet (i.e., natural diet group) and formula diet (i.e., formula diet group) evolved to the optimal status for their corresponding diet provisions, (2) the individuals in the natural diet group paid a lower cost (i.e., changed their gut microbial communities less) during diet transformation and release into the natural environment than did the individuals in the formula diet group, and (3) the gut microbes in the natural diet group better supported postrelease fitness and survival than did the gut microbes in the formula diet group. The results indicated that better prerelease diet training with more appropriate training diets and times could improve the reintroduction of Yangtze sturgeon by adjusting the prerelease gut microbial community. Because a relationship between diet (preference) and gut microbes is common in animals from insects (such as Drosophila melanogaster) to mammals (such as Homo sapiens), our hypothesis verified by the case study on Yangtze sturgeon applies to other animals. We therefore encourage future studies to identify optimal training diets and times for each species to best adjust its prerelease gut microbial community and then improve its postrelease fitness and survival in reintroduction projects.

13.
PLoS One ; 15(6): e0235043, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32589675

RESUMO

Captive breeding has been explored in Chinese sturgeon (Acipenser sinensis) for species protection. However, gonad development from stage II to IV of cultured female broodstocks is a handicap. This study aimed to explore the physiological and metabolic changes during the ovary development from stage II to IV of female Chinese sturgeon and the related energy regulatory mechanism, which may be helpful to address the developmental obstacle. The results showed that the oocyte volume increased and the muscle lipid content decreased with the ovary development. Ovarian RNA levels of most genes related to lipid and amino acid metabolism were higher in stage II and III than in stage IV. Serum contents of differential metabolites in arginine, cysteine, methionine, purine, tyrosine, lysine, valine, leucine and isoleucine metabolism pathways peaked at stage III, while the contents of sarcosine, alanine and histidine, as well as most oxylipins derived from fatty acids peaked at stage IV. These results indicated the more active amino acids, lipid metabolism, and energy dynamics of fish body in response to the high energy input of ovary developing from stage II to III, and the importance of alanine, histidine, taurine, folate and oxylipins for fish with ovary at stage IV.


Assuntos
Aminoácidos/metabolismo , Ácidos Graxos/metabolismo , Peixes/fisiologia , Metabolômica/métodos , Oogênese/fisiologia , Ovário/metabolismo , Animais , China , Espécies em Perigo de Extinção , Feminino , Expressão Gênica/fisiologia
14.
Sci Rep ; 7(1): 13419, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-29042681

RESUMO

Intrahepatic cholangiocarcinoma (ICC) is a highly malignant tumor, difficult to diagnose even at an early stage. In this study, we successfully constructed an nras 61K -induced ICC model in zebrafish. Transcriptome analysis and gene set enrichment analysis (GSEA) of liver samples of the ICC and WT (wild-type) zebrafish revealed that the genes differentially expressed between the two groups were mainly involved in focal adhesion, chemokine signaling and metabolic pathways. Analysis of DNA methylomes revealed that compared with WT samples, methylated genes in ICC samples were enriched in functions associated with cellular, single-organism and metabolic processes. In particular, our result discovered eleven potential biomarker genes of ICC which were conserved between zebrafish and humans. Moreover, three potential biomarker genes were hypomethylated in the tumorigenesis of ICC: ehf, epha4 and itgb6. In summary, our study provides a comprehensive analysis of molecular mechanisms accompanying the progressive nras 61K -induced ICC. This work indicates that our transgenic zebrafish could be a valuable model, not only for studying liver cancer, but also for exploring new therapeutic targets.


Assuntos
Neoplasias dos Ductos Biliares/genética , Biomarcadores Tumorais/genética , Colangiocarcinoma/genética , Proteínas de Peixe-Zebra/genética , Animais , Neoplasias dos Ductos Biliares/patologia , Biomarcadores Tumorais/metabolismo , Colangiocarcinoma/patologia , Metilação de DNA , Modelos Animais de Doenças , Fígado/metabolismo , Transcriptoma , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA