Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Exp Cell Res ; 438(1): 114030, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38583855

RESUMO

Acute respiratory distress syndrome (ARDS) is a serious lung condition that often leads to hospitalization in intensive care units and a high mortality rate. Sevoflurane is a volatile anesthetic with growing interest for sedation in ventilated patients with ARDS. It has been shown to have potential lung-protective effects, such as reduced inflammation and lung edema, or improved arterial oxygenation. In this study, we investigated the effects of sevoflurane on lung injury in cultured human carcinoma-derived lung alveolar epithelial (A549) cells. We found that sevoflurane was associated with improved wound healing after exposure to inflammatory cytokines, with preserved cell proliferation but no effect on cell migration properties. Sevoflurane exposure was also associated with enhanced cell viability and active autophagy in A549 cells exposed to cytokines. These findings suggest that sevoflurane may have beneficial effects on lung epithelial injury by promoting alveolar epithelial wound healing and by influencing the survival and proliferation of A549 epithelial cells in vitro. Further research is needed to confirm these findings and to investigate the key cellular mechanisms explaining sevoflurane's potential effects on lung epithelial injury.


Assuntos
Proliferação de Células , Sobrevivência Celular , Síndrome do Desconforto Respiratório , Sevoflurano , Cicatrização , Sevoflurano/farmacologia , Humanos , Síndrome do Desconforto Respiratório/tratamento farmacológico , Síndrome do Desconforto Respiratório/patologia , Cicatrização/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células A549 , Proliferação de Células/efeitos dos fármacos , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Movimento Celular/efeitos dos fármacos , Anestésicos Inalatórios/farmacologia , Citocinas/metabolismo , Autofagia/efeitos dos fármacos , Alvéolos Pulmonares/efeitos dos fármacos , Alvéolos Pulmonares/patologia
2.
J Transl Med ; 21(1): 397, 2023 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-37331963

RESUMO

BACKGROUND: Preclinical studies in acute respiratory distress syndrome (ARDS) have suggested that inhaled sevoflurane may have lung-protective effects and clinical trials are ongoing to assess its impact on major clinical outcomes in patients with ARDS. However, the underlying mechanisms of these potential benefits are largely unknown. This investigation focused on the effects of sevoflurane on lung permeability changes after sterile injury and the possible associated mechanisms. METHODS: To investigate whether sevoflurane could decrease lung alveolar epithelial permeability through the Ras homolog family member A (RhoA)/phospho-Myosin Light Chain 2 (Ser19) (pMLC)/filamentous (F)-actin pathway and whether the receptor for advanced glycation end-products (RAGE) may mediate these effects. Lung permeability was assessed in RAGE-/- and littermate wild-type C57BL/6JRj mice on days 0, 1, 2, and 4 after acid injury, alone or followed by exposure at 1% sevoflurane. Cell permeability of mouse lung epithelial cells was assessed after treatment with cytomix (a mixture of TNFɑ, IL-1ß, and IFNγ) and/or RAGE antagonist peptide (RAP), alone or followed by exposure at 1% sevoflurane. Levels of zonula occludens-1, E-cadherin, and pMLC were quantified, along with F-actin immunostaining, in both models. RhoA activity was assessed in vitro. RESULTS: In mice after acid injury, sevoflurane was associated with better arterial oxygenation, decreased alveolar inflammation and histological damage, and non-significantly attenuated the increase in lung permeability. Preserved protein expression of zonula occludens-1 and less increase of pMLC and actin cytoskeletal rearrangement were observed in injured mice treated with sevoflurane. In vitro, sevoflurane markedly decreased electrical resistance and cytokine release of MLE-12 cells, which was associated with higher protein expression of zonula occludens-1. Improved oxygenation levels and attenuated increase in lung permeability and inflammatory response were observed in RAGE-/- mice compared to wild-type mice, but RAGE deletion did not influence the effects of sevoflurane on permeability indices after injury. However, the beneficial effect of sevoflurane previously observed in wild-type mice on day 1 after injury in terms of higher PaO2/FiO2 and decreased alveolar levels of cytokines was not found in RAGE-/- mice. In vitro, RAP alleviated some of the beneficial effects of sevoflurane on electrical resistance and cytoskeletal rearrangement, which was associated with decreased cytomix-induced RhoA activity. CONCLUSIONS: Sevoflurane decreased injury and restored epithelial barrier function in two in vivo and in vitro models of sterile lung injury, which was associated with increased expression of junction proteins and decreased actin cytoskeletal rearrangement. In vitro findings suggest that sevoflurane may decrease lung epithelial permeability through the RhoA/pMLC/F-actin pathway.


Assuntos
Actinas , Síndrome do Desconforto Respiratório , Animais , Camundongos , Sevoflurano/farmacologia , Sevoflurano/metabolismo , Sevoflurano/uso terapêutico , Actinas/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Camundongos Endogâmicos C57BL , Pulmão/patologia , Síndrome do Desconforto Respiratório/patologia , Citocinas/metabolismo , Permeabilidade , Modelos Teóricos
3.
FASEB J ; 35(10): e21838, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34582061

RESUMO

Inflammation, oxidative stress, and protease/protease inhibitor imbalance with excessive production of proteases are factors associated with pathogenesis of the chronic obstructive pulmonary disease (COPD). In this study, we report that kallikrein-related peptidase 5 (KLK5) is a crucial protease involved in extracellular matrix (ECM) remodeling and bronchial epithelial repair after injury. First, we showed that KLK5 degrades the basal layer formed by culture of primary bronchial epithelial cells from COPD or non-COPD patients. Also, exogenous KLK5 acted differently on BEAS-2B cells already engaged in epithelial-to-mesenchymal transition (EMT) or on 16HBE 14o- cells harboring epithelial characteristics. Indeed, by inducing EMT, KLK5 reduced BEAS-2B cell adherence to the ECM. This effect, neutralized by tissue factor pathway inhibitor 2, a kunitz-type serine protease inhibitor, was due to a direct proteolytic activity of KLK5 on E-cadherin, ß-catenin, fibronectin, and α5ß1 integrin. Thus, KLK5 may strengthen EMT mechanisms and promote the migration of cells by activating the mitogen-activated protein kinase signaling pathway required for this function. In contrast, knockdown of endogenous KLK5 in 16HBE14o- cells, accelerated wound healing repair after injury, and exogenous KLK5 addition delayed the closure repair. These data suggest that among proteases, KLK5 could play a critical role in airway remodeling events associated with COPD during exposure of the pulmonary epithelium to inhaled irritants or smoking and the inflammation process.


Assuntos
Remodelação das Vias Aéreas , Brônquios/patologia , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal , Calicreínas/metabolismo , Neoplasias Pulmonares/patologia , Doença Pulmonar Obstrutiva Crônica/patologia , Idoso , Antígenos CD/genética , Antígenos CD/metabolismo , Brônquios/metabolismo , Caderinas/genética , Caderinas/metabolismo , Estudos de Casos e Controles , Células Cultivadas , Células Epiteliais/metabolismo , Feminino , Humanos , Calicreínas/genética , Neoplasias Pulmonares/metabolismo , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/metabolismo , Transdução de Sinais
4.
Int J Mol Sci ; 23(19)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36232959

RESUMO

The roles of thioredoxin-interacting protein (TXNIP) and receptor for advanced glycation end-products (RAGE)-dependent mechanisms of NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome-driven macrophage activation during acute lung injury are underinvestigated. Cultured THP-1 macrophages were treated with a RAGE agonist (S100A12), with or without a RAGE antagonist; cytokine release and intracytoplasmic production of reactive oxygen species (ROS) were assessed in response to small interfering RNA knockdowns of TXNIP and NLRP3. Lung expressions of TXNIP and NLRP3 and alveolar levels of IL-1ß and S100A12 were measured in mice after acid-induced lung injury, with or without administration of RAGE inhibitors. Alveolar macrophages from patients with acute respiratory distress syndrome and from mechanically ventilated controls were analyzed using fluorescence-activated cell sorting. In vitro, RAGE promoted cytokine release and ROS production in macrophages and upregulated NLRP3 and TXNIP mRNA expression in response to S100A12. TXNIP inhibition downregulated NLRP3 gene expression and RAGE-mediated release of IL-1ß by macrophages in vitro. In vivo, RAGE, NLRP3 and TXNIP lung expressions were upregulated during experimental acute lung injury, a phenomenon being reversed by RAGE inhibition. The numbers of cells expressing RAGE, NLRP3 and TXNIP among a specific subpopulation of CD16+CD14+CD206- ("pro-inflammatory") alveolar macrophages were higher in patients with lung injury. This study provides a novel proof-of-concept of complex RAGE-TXNIP-NLRP3 interactions during macrophage activation in acute lung injury.


Assuntos
Lesão Pulmonar Aguda , Inflamassomos , Animais , Proteínas de Transporte/genética , Citocinas/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Inflamassomos/metabolismo , Macrófagos Alveolares/metabolismo , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , RNA Mensageiro , RNA Interferente Pequeno/genética , Espécies Reativas de Oxigênio/metabolismo , Receptor para Produtos Finais de Glicação Avançada/genética , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Proteína S100A12 , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
5.
Biol Chem ; 402(10): 1257-1268, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-33977679

RESUMO

The protease activities are tightly regulated by inhibitors and dysregulation contribute to pathological processes such as cancer and inflammatory disorders. Tissue factor pathway inhibitor 2 (TFPI-2) is a serine proteases inhibitor, that mainly inhibits plasmin. This protease activated matrix metalloproteases (MMPs) and degraded extracellular matrix. Other serine proteases are implicated in these mechanisms like kallikreins (KLKs). In this study, we identified for the first time that TFPI-2 is a potent inhibitor of KLK5 and 12. Computer modeling showed that the first Kunitz domain of TFPI-2 could interact with residues of KLK12 near the catalytic triad. Furthermore, like plasmin, KLK12 was able to activate proMMP-1 and -3, with no effect on proMMP-9. Thus, the inhibition of KLK12 by TFPI-2 greatly reduced the cascade activation of these MMPs and the cleavage of cysteine-rich 61, a matrix signaling protein. Moreover, when TFPI-2 bound to extracellular matrix, its classical localisation, the KLK12 inhibition was retained. Finally, TFPI-2 was downregulated in human non-small-cell lung tumour tissue as compared with non-affected lung tissue. These data suggest that TFPI-2 is a potent inhibitor of KLK12 and could regulate matrix remodeling and cancer progression mediated by KLK12.


Assuntos
Glicoproteínas , Calicreínas , Carcinoma Pulmonar de Células não Pequenas , Humanos , Lipoproteínas , Neoplasias Pulmonares
6.
Biol Chem ; 399(9): 959-971, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-29604204

RESUMO

Human tissue kallikreins (KLKs) are 15 members of the serine protease family and are present in various healthy human tissues including airway tissues. Multiple studies have revealed their crucial role in the pathophysiology of a number of chronic, infectious and tumour lung diseases. KLK1, 3 and 14 are involved in asthma pathogenesis, and KLK1 could be also associated with the exacerbation of this inflammatory disease caused by rhinovirus. KLK5 was demonstrated as an influenza virus activating protease in humans, and KLK1 and 12 could also be involved in the activation and spread of these viruses. KLKs are associated with lung cancer, with up- or downregulation of expression depending on the KLK, cancer subtype, stage of tumour and also the microenvironment. Functional studies showed that KLK12 is a potent pro-angiogenic factor. Moreover, KLK6 promotes malignant-cell proliferation and KLK13 invasiveness. In contrast, KLK8 and KLK10 reduce proliferation and invasion of malignant cells. Considering the involvement of KLKs in various physiological and pathological processes, KLKs appear to be potential biomarkers and therapeutic targets for lung diseases.


Assuntos
Calicreínas/metabolismo , Pneumopatias/enzimologia , Proliferação de Células , Humanos , Pneumopatias/patologia , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA