RESUMO
Earthquakes preceding large events are commonly referred to as foreshocks. They are often considered as precursory phenomena reflecting the nucleation process of the main rupture. Such foreshock sequences may also be explained by cascades of triggered events. Recent advances in earthquake detection motivates a reevaluation of seismicity variations prior to mainshocks. Based on a highly complete earthquake catalog, previous studies suggested that mainshocks in Southern California are often preceded by anomalously elevated seismicity. In this study, we test the same catalog against the Epidemic Type Aftershock Sequence model that accounts for temporal clustering due to earthquake interactions. We find that 10/53 mainshocks are preceded by a significantly elevated seismic activity compared with our model. This shows that anomalous foreshock activity is relatively uncommon when tested against a model of earthquake interactions. Accounting for the recurrence of anomalies over time, only 3/10 mainshocks present a mainshock-specific anomaly with a high predictive power.
RESUMO
Volcano-tectonic seismicity has been recorded for decades on various volcanoes and is linked with the magma transport and reservoir pressurization. Yet earthquakes often appear broadly distributed such that magma movement is difficult to infer from its analysis. We explore the seismicity that occurred before eruptions at Piton de la Fournaise in the last 5 years. Using template matching and relocation techniques, we produce a refined image of the summit seismicity, demonstrating that most earthquakes are located on a ring structure. However, only a portion of this structure is activated before each eruption, which provides an indication as to the direction of the future eruptive site. Furthermore, we show that the delay between the pre-eruptive swarm and the eruption onset is proportional to the distance of the eruptive fissures relative to the summit cone. This reveals that the beginning of the intrusion already bears information regarding the future eruption location.
RESUMO
We study theoretically the propagation of a crack front in mode I along an interface in a disordered elastic medium, with a numerical model considering a thermally activated rheology, toughness disorder and long-range elastic interactions. This model reproduces not only the large-scale dynamics of the crack front position in fast or creep loading regimes, but also the small-scale self-affine behaviour of the front. Two different scaling laws are predicted for the front morphology, with a Hurst exponent of 0.5 at small scales and a logarithmic scaling law at large scales, consistently with experiments. The prefactor of these scaling laws is expressed as a function of the temperature, and of the quenched disorder characteristics. The cross-over between these regimes is expressed as a function of the quenched disorder amplitude, and is proportional to the average energy release rate, and to the inverse of temperature. This model captures as well the experimentally observed local velocity fluctuation probability distribution, with a high-velocity tail P(v)â¼v -2.6 This feature is shown to arise when the quenched disorder is sufficiently large, whereas smaller toughness fluctuations lead to a lognormal-like velocity distribution. Overall, the system is shown to obey a scaling determined by two distinct mechanisms as a function of scale: namely, the large scales display fluctuations similar to an elastic line in an annealed noise excited as the average front travels through the pinning landscape, while small scales display a balance between thresholds in possible elastic forces and quenched disorder.This article is part of the theme issue 'Statistical physics of fracture and earthquakes'.