Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Biol Chem ; 289(35): 24043-58, 2014 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-25023279

RESUMO

Angiogenesis or the formation of new blood vessels is important in the growth and metastatic potential of various cancers. Therefore, understanding the mechanism(s) by which angiogenesis occurs can have important therapeutic implications in numerous malignancies. We and others have demonstrated that low molecular weight hyaluronan (LMW-HA, ∼2500 Da) promotes endothelial cell (EC) barrier disruption and angiogenesis. However, the mechanism(s) by which this occurs is poorly defined. Our data indicate that treatment of human EC with LMW-HA induced CD44v10 association with the receptor-tyrosine kinase, EphA2, transactivation (tyrosine phosphorylation) of EphA2, and recruitment of the PDZ domain scaffolding protein, PATJ, to the cell periphery. Silencing (siRNA) CD44, EphA2, PATJ, or Dbs (RhoGEF) expression blocked LMW-HA-mediated angiogenesis (EC proliferation, migration, and tubule formation). In addition, silencing EphA2, PATJ, Src, or Dbs expression blocked LMW-HA-mediated RhoA activation. To translate our in vitro findings, we utilized a novel anginex/liposomal targeting of murine angiogenic endothelium with either CD44 or EphA2 siRNA and observed inhibition of LMW-HA-induced angiogenesis in implanted Matrigel plugs. Taken together, these results indicate LMW-HA-mediated transactivation of EphA2 is required for PATJ and Dbs membrane recruitment and subsequent RhoA activation required for angiogenesis. These results suggest that targeting downstream effectors of LMW-HA could be a useful therapeutic intervention for angiogenesis-associated diseases including tumor progression.


Assuntos
Efrina-A2/genética , Ácido Hialurônico/fisiologia , Neoplasias/patologia , Neovascularização Patológica/fisiopatologia , Receptores Proteína Tirosina Quinases/genética , Ativação Transcricional , Animais , Progressão da Doença , Efrina-A2/fisiologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Ácido Hialurônico/química , Camundongos , Camundongos Endogâmicos C57BL , Peso Molecular , Receptores Proteína Tirosina Quinases/fisiologia
2.
Am J Respir Crit Care Med ; 189(5): 593-601, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24471484

RESUMO

RATIONALE: An increased cancer aggressiveness and mortality have been recently reported among patients with obstructive sleep apnea (OSA). Intermittent hypoxia (IH), a hallmark of OSA, enhances melanoma growth and metastasis in mice. OBJECTIVES: To assess whether OSA-related adverse cancer outcomes occur via IH-induced changes in host immune responses, namely tumor-associated macrophages (TAMs). MEASUREMENTS AND MAIN RESULTS: Lung epithelial TC1 cell tumors were 84% greater in mice subjected to IH for 28 days compared with room air (RA). In addition, TAMs in IH-exposed tumors exhibited reductions in M1 polarity with a shift toward M2 protumoral phenotype. Although TAMs from tumors harvested from RA-exposed mice increased TC1 migration and extravasation, TAMs from IH-exposed mice markedly enhanced such effects and also promoted proliferative rates and invasiveness of TC1 cells. Proliferative rates of melanoma (B16F10) and TC1 cells exposed to IH either in single culture or in coculture with macrophages (RAW 264.7) increased only when RAW 264.7 macrophages were concurrently present. CONCLUSIONS: Our findings support the notion that IH-induced alterations in TAMs participate in the adverse cancer outcomes reported in OSA.


Assuntos
Hipóxia/imunologia , Neoplasias Pulmonares/patologia , Macrófagos/patologia , Melanoma Experimental/patologia , Apneia Obstrutiva do Sono/fisiopatologia , Animais , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Citometria de Fluxo , Hipóxia/etiologia , Neoplasias Pulmonares/imunologia , Masculino , Melanoma Experimental/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Invasividade Neoplásica , Fenótipo , Apneia Obstrutiva do Sono/imunologia , Linfócitos T Citotóxicos/patologia
3.
Anesthesiology ; 116(4): 857-67, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22343475

RESUMO

BACKGROUND: Recent epidemiologic studies suggesting that there were differences in cancer recurrence contingent on anesthetic regimens have raised the possibility that µ-opioid agonists can influence cancer progression. Based on our previous studies indicating the µ-opioid receptor (MOR) is up-regulated in several types of non-small cell lung cancer, this study examined the functional significance of MOR overexpression to elucidate a possible mechanism for the epidemiologic findings. METHODS: Stable vector control and MOR1 overexpressing human bronchioloalveolar carcinoma cells were evaluated using immunoblot analysis, proliferation and transendothelial extravasation assays with or without Akt inhibitor, mTOR inhibitor (temsirolimus), or the peripheral MOR antagonist, methylnaltrexone. In human lung cancer xenograft models, primary tumor growth rates and lung metastasis were analyzed using consecutive tumor volume measurements and nestin immunoreactivity in lungs of the nude mouse model. RESULTS: The authors provide evidence that MOR is an important regulator of lung cancer progression. MOR overexpression increased Akt and mTOR activation, proliferation, and extravasation in human bronchioloalveolar carcinoma cells. In vivo, overexpression of MOR in human bronchoalveolar carcinoma cells increased primary tumor growth rates in nude mice by approximately 2.5-fold and lung metastasis by approximately 20-fold compared with vector control cells (n = 4 per condition). CONCLUSIONS: The overexpression data suggest a possible direct effect of MOR on Akt and mTOR activation and lung cancer progression. Such an effect provides a plausible explanation for the epidemiologic findings. The authors' observations further suggest that exploration of MOR in non-small cell lung carcinoma merits further study both as a diagnostic and therapeutic option.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/secundário , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Opioides mu/biossíntese , Serina-Treonina Quinases TOR/metabolismo , Animais , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Progressão da Doença , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Nus , Proteínas Proto-Oncogênicas c-akt/fisiologia , Receptores Opioides mu/genética , Receptores Opioides mu/fisiologia , Serina-Treonina Quinases TOR/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
4.
J Biol Chem ; 285(24): 18575-85, 2010 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-20360610

RESUMO

Non-small cell lung cancer (NSCLC) has a poor prognosis and improved therapies are needed. Expression of EphA2 is increased in NSCLC metastases. In this study, we investigated EphA2 mutations in NSCLC and examined molecular pathways involved in NSCLC. Tumor and cell line DNA was sequenced. One EphA2 mutation was modeled by expression in BEAS2B cells, and functional and biochemical studies were conducted. A G391R mutation was detected in H2170 and 2/28 squamous cell carcinoma patient samples. EphA2 G391R caused constitutive activation of EphA2 with increased phosphorylation of Src, cortactin, and p130(Cas). Wild-type (WT) and G391R cells had 20 and 40% increased invasiveness; this was attenuated with knockdown of Src, cortactin, or p130(Cas). WT and G391R cells demonstrated a 70% increase in focal adhesion area. Mammalian target of rapamycin (mTOR) phosphorylation was increased in G391R cells with increased survival (55%) compared with WT (30%) and had increased sensitivity to rapamycin. A recurrent EphA2 mutation is present in lung squamous cell carcinoma and increases tumor invasion and survival through activation of focal adhesions and actin cytoskeletal regulatory proteins as well as mTOR. Further study of EphA2 as a therapeutic target is warranted.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Adesões Focais/metabolismo , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Pulmonares/metabolismo , Mutação , Proteínas Serina-Treonina Quinases/metabolismo , Receptor EphA2/biossíntese , Linhagem Celular Tumoral , Sobrevivência Celular , Análise Mutacional de DNA , Humanos , Imuno-Histoquímica/métodos , Invasividade Neoplásica , Análise de Sequência com Séries de Oligonucleotídeos , Serina-Treonina Quinases TOR , Transfecção
5.
Am J Physiol Lung Cell Mol Physiol ; 301(2): L137-47, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21571904

RESUMO

Hyaluronan (HA) has diverse functions in normal lung homeostasis and pulmonary disease. HA constitutes the major glycosaminoglycan in lung tissue, with HA degradation products, produced by hyaluronidase enzymes and reactive oxygen species, being implicated in several lung diseases, including acute lung injury, asthma, chronic obstructive pulmonary disease, and pulmonary hypertension. The differential activities of HA and its degradation products are due, in part, to regulation of multiple HA-binding proteins, including cluster of differentiation 44 (CD44), Toll-like receptor 4 (TLR4), HA-binding protein 2 (HABP2), and receptor for HA-mediated motility (RHAMM). Recent research indicates that exogenous administration of high-molecular-weight HA can serve as a novel therapeutic intervention for lung diseases, including lipopolysaccharide (LPS)-induced acute lung injury, sepsis/ventilator-induced lung injury, and airway hyperreactivity. This review focuses on the regulatory role of HA and HA-binding proteins in lung pathology and discusses the capacity of HA to augment and inhibit various lung diseases.


Assuntos
Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/metabolismo , Pneumopatias/metabolismo , Pulmão/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/prevenção & controle , Animais , Hiper-Reatividade Brônquica/tratamento farmacológico , Hiper-Reatividade Brônquica/prevenção & controle , Bronquite/prevenção & controle , Doença Crônica , Proteínas da Matriz Extracelular/metabolismo , Glucuronosiltransferase/metabolismo , Humanos , Hialuronan Sintases , Ácido Hialurônico/química , Ácido Hialurônico/uso terapêutico , Lipopolissacarídeos , Pneumopatias/induzido quimicamente , Pneumopatias/tratamento farmacológico , Pneumopatias/prevenção & controle , Peso Molecular , Isoformas de Proteínas/metabolismo , Enfisema Pulmonar/prevenção & controle , Espécies Reativas de Oxigênio/metabolismo , Receptor 4 Toll-Like/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle
6.
Arterioscler Thromb Vasc Biol ; 30(3): 483-90, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20042707

RESUMO

OBJECTIVE: The disruption of the endothelial cell barrier is a critical feature of inflammation and an important contributing factor to acute lung injury (ALI), an inflammatory condition that is a major cause of morbidity and mortality in critically ill patients. We evaluated the role of the extracellular serine protease, hyaluronic acid binding protein 2 (HABP2), in vascular barrier regulation. METHODS AND RESULTS: By using immunoblot and immunohistochemical analysis, we observed that lipopolysaccharide (LPS) induces HABP2 expression in murine lung endothelium in vivo and in human pulmonary microvascular endothelial cells (ECs) in vitro. High-molecular-weight hyaluronan (HMW-HA, approximately 1x10(6) Da) decreased HABP2 protein expression in human pulmonary microvascular ECs and decreased purified HABP2 enzymatic activity, whereas low-molecular-weight HA (LMW-HA, approximately 2500 Da) increased these activities. The effects of LMW-HA, but not HMW-HA, on HABP2 activity were inhibited with a peptide of the polyanion-binding domain of HABP2. Silencing (small interfering RNA) HABP2 expression augmented HMW-HA-induced EC barrier enhancement and inhibited LPS and LMW-HA-mediated EC barrier disruption, results that were reversed with overexpression of HABP2. Silencing protease-activated receptor 1 and 3, RhoA, or Rho kinase expression attenuated LPS-, LMW-HA-, and HABP2-mediated EC barrier disruption. By using murine models of acute lung injury, we observed that LPS- and ventilator-induced pulmonary vascular hyperpermeability was significantly reduced with vascular silencing (small interfering RNA) of HABP2. CONCLUSIONS: HABP2 negatively regulates vascular integrity via activation of protease-activated receptor/RhoA/Rho kinase signaling and represents a potentially useful therapeutic target for syndromes of increased vascular permeability.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Permeabilidade da Membrana Celular/fisiologia , Endotélio Vascular/metabolismo , Serina Endopeptidases/metabolismo , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/fisiopatologia , Animais , Permeabilidade da Membrana Celular/efeitos dos fármacos , Modelos Animais de Doenças , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Humanos , Ácido Hialurônico/farmacologia , Lipopolissacarídeos/efeitos adversos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores Ativados por Proteinase/metabolismo , Transdução de Sinais/fisiologia , Ventiladores Mecânicos/efeitos adversos , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
7.
Anesth Analg ; 112(3): 558-67, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21156980

RESUMO

BACKGROUND: The possibility that µ opioid agonists can influence cancer recurrence is a subject of recent interest. Epidemiologic studies suggested that there were differences in cancer recurrence in breast and prostate cancer contingent on anesthetic regimens. In this study, we identify a possible mechanism for these epidemiologic findings on the basis of µ opioid receptor (MOR) regulation of Lewis lung carcinoma (LLC) tumorigenicity in cell and animal models. METHODS: We used human lung tissue and human non-small cell lung cancer (NSCLC) cell lines and evaluated MOR expression using immunoblot and immunohistochemical analysis. LLC cells were treated with the peripheral opioid antagonist methylnaltrexone (MNTX) or MOR shRNA and evaluated for proliferation, invasion, and soft agar colony formation in vitro and primary tumor growth and lung metastasis in C57BL/6 and MOR knockout mice using VisEn fluorescence mediated tomography imaging and immunohistochemical analysis. RESULTS: We provide several lines of evidence that the MOR may be a potential target for lung cancer, a disease with high mortality and few treatment options. We first observed that there is ∼5- to 10-fold increase in MOR expression in lung samples from patients with NSCLC and in several human NSCLC cell lines. The MOR agonists morphine and [D-Ala(2), N-MePhe(4), Gly-ol]-enkephalin (DAMGO) increased in vitro LLC cell growth. Treatment with MNTX or silencing MOR expression inhibited LLC invasion and anchorage-independent growth by 50%-80%. Injection of MOR silenced LLC lead to a ∼65% reduction in mouse lung metastasis. In addition, MOR knockout mice do not develop significant tumors when injected with LLC in comparison with wild-type controls. Finally, continuous infusion of the peripheral opioid antagonist MNTX attenuates primary LLC tumor growth and reduces lung metastasis. CONCLUSIONS: Taken together, our data suggest a possible direct effect of opiates on lung cancer progression, and provide a plausible explanation for the epidemiologic findings. Our observations further suggest a possible therapeutic role for opioid antagonists.


Assuntos
Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Progressão da Doença , Neoplasias Pulmonares/metabolismo , Receptores Opioides mu/fisiologia , Animais , Carcinoma Pulmonar de Lewis/patologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Invasividade Neoplásica/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Am J Physiol Lung Cell Mol Physiol ; 299(5): L639-51, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20709728

RESUMO

Endothelial cell (EC) barrier dysfunction results in increased vascular permeability, a perturbation observed in inflammatory states, tumor angiogenesis, atherosclerosis, and both sepsis and acute lung injury. Therefore, agents that enhance EC barrier integrity have important therapeutic implications. We observed that binding of high-molecular-weight hyaluronan (HMW-HA) to its cognate receptor CD44 within caveolin-enriched microdomains (CEM) enhances human pulmonary EC barrier function. Immunocytochemical analysis indicated that HMW-HA promotes redistribution of a significant population of CEM to areas of cell-cell contact. Quantitative proteomic analysis of CEM isolated from human EC demonstrated HMW-HA-mediated recruitment of cytoskeletal regulatory proteins (annexin A2, protein S100-A10, and filamin A/B). Inhibition of CEM formation [caveolin-1 small interfering RNA (siRNA) and cholesterol depletion] or silencing (siRNA) of CD44, annexin A2, protein S100-A10, or filamin A/B expression abolished HMW-HA-induced actin cytoskeletal reorganization and EC barrier enhancement. To confirm our in vitro results in an in vivo model of inflammatory lung injury with vascular hyperpermeability, we observed that the protective effects of HMW-HA on LPS-induced pulmonary vascular leakiness were blocked in caveolin-1 knockout mice. Furthermore, targeted inhibition of CD44 expression in the mouse pulmonary vasculature significantly reduced HMW-HA-mediated protection from LPS-induced hyperpermeability. These data suggest that HMW-HA, via CD44-mediated CEM signaling events, represents a potentially useful therapeutic agent for syndromes of increased vascular permeability.


Assuntos
Vasos Sanguíneos/metabolismo , Permeabilidade Capilar , Ácido Hialurônico/química , Ácido Hialurônico/metabolismo , Pulmão/irrigação sanguínea , Lesão Pulmonar Aguda , Animais , Caveolina 1/metabolismo , Linhagem Celular , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Humanos , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Inflamação/metabolismo , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Peso Molecular , Proteoma/análise , RNA Interferente Pequeno/metabolismo
10.
Oncotarget ; 7(21): 31586-601, 2016 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-26980710

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a devastating cancer in large part due to late diagnosis and a lack of effective screening tests. In spite of recent progress in imaging, surgery and new therapeutic options for pancreatic cancer, the overall five-year survival still remains unacceptably low. Numerous studies have shown that focal adhesion kinase (FAK) is activated in many cancers including PDAC and promotes cancer progression and metastasis. Paxillin, an intracellular adaptor protein that plays a key role in cytoskeletal organization, connects integrins to FAK and plays a key role in assembly and disassembly of focal adhesions. Here, we have reviewed evidence in support of FAK as a potential therapeutic target and summarized related combinatorial therapies.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Neoplasias Pancreáticas/metabolismo , Paxilina/metabolismo , Biomarcadores Tumorais/antagonistas & inibidores , Biomarcadores Tumorais/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Quinase 1 de Adesão Focal/antagonistas & inibidores , Humanos , Modelos Biológicos , Terapia de Alvo Molecular/métodos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Paxilina/antagonistas & inibidores , Inibidores de Proteínas Quinases/uso terapêutico , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA