Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Comput Struct Biotechnol J ; 20: 3208-3222, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35832621

RESUMO

Characterizing metagenomes via kmer-based, database-dependent taxonomic classification has yielded key insights into underlying microbiome dynamics. However, novel approaches are needed to track community dynamics and genomic flux within metagenomes, particularly in response to perturbations. We describe KOMB, a novel method for tracking genome level dynamics within microbiomes. KOMB utilizes K-core decomposition to identify Structural variations (SVs), specifically, population-level Copy Number Variation (CNV) within microbiomes. K-core decomposition partitions the graph into shells containing nodes of induced degree at least K, yielding reduced computational complexity compared to prior approaches. Through validation on a synthetic community, we show that KOMB recovers and profiles repetitive genomic regions in the sample. KOMB is shown to identify functionally-important regions in Human Microbiome Project datasets, and was used to analyze longitudinal data and identify keystone taxa in Fecal Microbiota Transplantation (FMT) samples. In summary, KOMB represents a novel graph-based, taxonomy-oblivious, and reference-free approach for tracking CNV within microbiomes. KOMB is open source and available for download at https://gitlab.com/treangenlab/komb.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA