Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Mol Cell Neurosci ; 115: 103643, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34186187

RESUMO

The taiep rat undergoes hypomyelination and progressive demyelination caused by an abnormal microtubule accumulation in oligodendrocytes, which elicits neuroinflammation and motor behavior dysfunction. Based on taurine antioxidant and proliferative actions, this work explored whether its sustained administration from the embryonic age to adulthood could prevent neuroinflammation, stimulate cell proliferation, promote myelination, and relieve motor impairment. Taurine (50 mg/L of drinking water = 50 ppm) was given to taiep pregnant rats on gestational day 15 and afterward to the male offspring until eight months of age. We measured the levels of nitric oxide (NO), malondialdehyde + 4-hydroxyalkenals (MDA + 4-HDA), CXCL1, CXCR2 receptor, growth factors (BNDF and FGF2), cell proliferation, and myelin content over time. Integral motor behavior was also evaluated. Our results showed that taurine administration significantly decreased NO and MDA + 4-HDA levels, increased cell proliferation, and promoted myelination in an age- and brain region-dependent fashion compared with untreated taiep rats. Taurine effect on chemokines and growth factors was also variable. Taurine improved vestibular reflexes and limb muscular strength in perinatal rats and fine movements and immobility episodes in adult rats. These results show that chronic taurine administration partially alleviates the taiep neuropathology.


Assuntos
Destreza Motora , Taurina , Animais , Masculino , Doenças Neuroinflamatórias , Estresse Oxidativo , Ratos , Ratos Mutantes , Ratos Sprague-Dawley
2.
Int J Mol Sci ; 23(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36232716

RESUMO

The α-synucleinopathies constitute a subset of neurodegenerative disorders, of which Parkinson's disease (PD) is the most common worldwide, characterized by the accumulation of misfolded α-synuclein in the cytoplasm of neurons, which spreads in a prion-like manner to anatomically interconnected brain areas. However, it is not clear how α-synucleinopathy triggers neurodegeneration. We recently developed a rat model through a single intranigral administration of the neurotoxic ß-sitosterol ß-D-glucoside (BSSG), which produces α-synucleinopathy. In this model, we aimed to evaluate the temporal pattern of levels in oxidative and nitrosative stress and mitochondrial complex I (CI) dysfunction and how these biochemical parameters are associated with neurodegeneration in different brain areas with α-synucleinopathy (Substantia nigra pars compacta, the striatum, in the hippocampus and the olfactory bulb, where α-syn aggregation spreads). Interestingly, an increase in oxidative stress and mitochondrial CI dysfunction accompanied neurodegeneration in those brain regions. Furthermore, in silico analysis suggests a high-affinity binding site for BSSG with peroxisome proliferator-activated receptors (PPAR) alpha (PPAR-α) and gamma (PPAR-γ). These findings will contribute to elucidating the pathophysiological mechanisms associated with α-synucleinopathies and lead to the identification of new early biomarkers and therapeutic targets.


Assuntos
Encéfalo , Complexo I de Transporte de Elétrons , Mitocôndrias , Estresse Oxidativo , Sinucleinopatias , alfa-Sinucleína , Animais , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Complexo I de Transporte de Elétrons/metabolismo , Mitocôndrias/metabolismo , Estresse Nitrosativo , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Ratos , Sinucleinopatias/metabolismo , Sinucleinopatias/fisiopatologia , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo
3.
Inflamm Res ; 66(2): 167-175, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27785531

RESUMO

OBJECTIVE: To study the relationship between the release of inflammatory cytokines and mobilization of zinc into liver, and the expression of metallothionein and Zip14 transporter after an abdominal surgery in rats. MATERIALS: Thirty-five male Wistar rats were subjected to experimental surgical stress, then the subgroups of five animals were killed at 3, 6, 9, 12, 16, 20 and 24 h. Matched groups without surgery were used as controls. METHODS: Zinc levels were determined by AAS, intracellular zinc by zinquin and dithizone staining. Hepatic metallothionein was assayed by a Cd-saturation method, and IL-1ß, IL-6, and TNF-ß by immunoassays. Zip14 expression was analyzed by real-time RT-PCR, and protein level by immunohistochemistry and Western blot. RESULTS: Experimental surgery produced a hypozincemia, and the increase of hepatic zinc also produced the release of IL-1ß, IL-6 in serum, and the increase of hepatic MT. Histochemistry showed a decrease of free zinc at 3-6 h, but an increase at 9 h (zinquin); meanwhile, total intracellular zinc increased after 9 h (dithizone). RNAm and protein levels of Zip14 were elevated between 6 and 20 h after surgery. CONCLUSION: Biochemical changes described in this work could be part of the APR, and directed to respond to the damage produced during surgical trauma.


Assuntos
Abdome/cirurgia , Proteínas de Transporte de Cátions/metabolismo , Interleucina-1beta/sangue , Interleucina-6/sangue , Fígado/metabolismo , Metalotioneína/metabolismo , Zinco/metabolismo , Animais , Proteínas de Transporte de Cátions/genética , Masculino , Ratos Wistar , Regulação para Cima , Zinco/sangue
4.
Arch Biochem Biophys ; 583: 27-35, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26253262

RESUMO

Previous studies have linked cadmium exposure to disturbances in carbohydrate and lipid metabolism. In this study we investigate the effects in Wistar rats of an oral cadmium exposure in drinking water on carbohydrates, lipids and insulin release. Also, using mathematical models we studied the effect of cadmium on insulin resistance and sensitivity in liver, muscle, adipose and cardiovascular tissue. Cadmium exposure induced hyperglycemia, increased insulin release after a glucose load, and caused increases in serum triglycerides, cholesterol, LDL-C and VLDL-C, and a decrease of HDL-C. In addition, there was an accumulation of cadmium in pancreas and an increase of insulin. After exposure, HOMA-IR was increased, while the HOMA-S%, QUICKI and Matsuda-DeFronzo indexes showed decreases. A decrease of insulin sensitivity was shown in muscle and liver. Additionally, cadmium increases insulin resistance in the liver, adipose tissue and cardiovascular system. Finally, ß-cell functioning was evaluated by HOMA-B% index and insulin disposition index, which were decreased, while insulin generation index increased. In conclusion, cadmium increases insulin release, induces hyperglycemia and alters lipid metabolism. These changes likely occur as a consequence of reduced sensitivity and increased insulin resistance in multiple insulin-dependent and non-dependent tissues, producing a biochemical phenotype similar to metabolic syndrome and diabetes.


Assuntos
Cádmio/toxicidade , Resistência à Insulina , Pâncreas/efeitos dos fármacos , Tecido Adiposo/fisiopatologia , Animais , Sistema Cardiovascular/fisiopatologia , Fígado/fisiopatologia , Masculino , Músculos/fisiopatologia , Pâncreas/fisiopatologia , Ratos , Ratos Wistar , Testes de Toxicidade Crônica
5.
J Biochem Mol Toxicol ; 29(12): 587-94, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26214600

RESUMO

Alkaline phosphatase (ALP) activity in the serum and liver from rats administered with cadmium (Cd) in drinking water was studied. After metal administration, Cd showed a time-dependent accumulation in the liver, meanwhile metallothionein had a maximum increase at 1 month, remaining in this level until the end of the study. On the other hand, serum and liver ALP activity was decreased after 3 months exposure. To determine if Cd produced an inhibition on enzyme, apo-ALP prepared from both nonexposed and exposed rats was reactivated with Zn, showing 60% more activity as compared with the enzyme isolated from nonexposed rats. In vitro assays showed that Cd-ALP was partially reactivated with Zn; however, in the presence of cadmium, Zn-ALP was completely inhibited. Kinetic studies indicate a noncompetitive inhibition by Cd; these results suggest that Cd can substitute Zn, and/or Cd can interact with nucleophilic ligands essential for the enzymatic activity.


Assuntos
Fosfatase Alcalina/metabolismo , Cádmio/toxicidade , Fígado/efeitos dos fármacos , Fosfatase Alcalina/antagonistas & inibidores , Fosfatase Alcalina/sangue , Animais , Ligação Competitiva , Cádmio/metabolismo , Cinética , Fígado/enzimologia , Masculino , Ratos , Ratos Wistar , Zinco/metabolismo
6.
Neural Plast ; 2015: 375391, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26355725

RESUMO

Prophylactic subacute administration of zinc decreases lipoperoxidation and cell death following a transient cerebral hypoxia-ischemia, thus suggesting neuroprotective and preconditioning effects. Chemokines and growth factors are also involved in the neuroprotective effect in hypoxia-ischemia. We explored whether zinc prevents the cerebral cortex-hippocampus injury through regulation of CCL2, CCR2, FGF2, and IGF-1 expression following a 10 min of common carotid artery occlusion (CCAO). Male rats were grouped as follows: (1) Zn96h, rats injected with ZnCl2 (one dose every 24 h during four days); (2) Zn96h + CCAO, rats treated with ZnCl2 before CCAO; (3) CCAO, rats with CCAO only; (4) Sham group, rats with mock CCAO; and (5) untreated rats. The cerebral cortex-hippocampus was dissected at different times before and after CCAO. CCL2/CCR2, FGF2, and IGF-1 expression was assessed by RT-PCR and ELISA. Learning in Morris Water Maze was achieved by daily training during 5 days. Long-term memory was evaluated on day 7 after learning. Subacute administration of zinc increased expression of CCL2, CCR2, FGF2, and IGF-1 in the early and late phases of postreperfusion and prevented the CCAO-induced memory loss in the rat. These results might be explained by the induction of neural plasticity because of the expression of CCL2 and growth factors.


Assuntos
Cloretos/uso terapêutico , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Hipóxia-Isquemia Encefálica/psicologia , Transtornos da Memória/etiologia , Transtornos da Memória/prevenção & controle , Compostos de Zinco/uso terapêutico , Animais , Estenose das Carótidas/psicologia , Quimiocina CCL2/biossíntese , Fator 2 de Crescimento de Fibroblastos/biossíntese , Fator de Crescimento Insulin-Like I/biossíntese , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Memória de Longo Prazo/efeitos dos fármacos , Ratos , Ratos Wistar , Receptores CCR2/biossíntese
7.
Heliyon ; 10(9): e30017, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38707461

RESUMO

The transient hypoxic-ischemic attack, also known as a minor stroke, can result in long-term neurological issues such as memory loss, depression, and anxiety due to an increase in nitrosative stress. The individual or combined administration of chronic prophylactic zinc and therapeutic selenium is known to reduce nitrosative stress in the first seven days post-reperfusion and, due to an antioxidant effect, prevent cell death. Besides, zinc or selenium, individually administered, also causes antidepressant and anxiolytic effects. Therefore, this work evaluated whether combining zinc and selenium could prevent stroke-elicited cognition and behavior deficits after 30 days post-reperfusion. Accordingly, we assessed the expression of growth factors at 7 days post-reperfusion, a four-time course of memory (from 7 to 28 days post-learning test), and cell proliferation, depression, and anxiety-like behavior at 30 days post-reperfusion. Male Wistar rats with a weight between 190 and 240 g) were treated with chronic prophylactic zinc administration with a concentration of 0.2 mg/kg for 15 days before common carotid artery occlusion (10 min) and then with therapeutic selenium (6 µg/kg) for 7 days post-reperfusion. Compared with individual administrations, the administration combined of prophylactic zinc and therapeutic selenium decreased astrogliosis, increased growth factor expression, and improved cell proliferation and survival in two regions, the hippocampus, and cerebral cortex. These effects prevented memory loss, depression, and anxiety-like behaviors. In conclusion, these results demonstrate that the prophylactic zinc administration combined with therapeutic selenium can reduce the long-term sequelae caused by the transient ischemic attack. Significance statement. A minor stroke caused by a transient ischemic attack can result in psychomotor sequelae that affect not only the living conditions of patients and their families but also the economy. The incidence of these micro-events among young people has increased in the world. Nonetheless, there is no deep understanding of how this population group responds to regular treatments (Ekker and et al., 2018) [1]. On the basis that zinc and selenium have antioxidant, anti-inflammatory, and regenerative properties in stroke animal models, our work explored whether the chronic combined administration of prophylactic zinc and therapeutic selenium could prevent neurological sequelae in the long term in a stroke rat model of unilateral common carotid artery occlusion (CCAO) by 10-min. Our results showed that this combined treatment provided a long-term neuroprotective effect by decreasing astrogliosis, memory loss, anxiety, and depression-like behavior.

8.
Behav Neurol ; 2022: 5388944, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35637877

RESUMO

Exercise performance and zinc administration individually yield a protective effect on various neurodegenerative models, including ischemic brain injury. Therefore, this work was aimed at evaluating the combined effect of subacute prophylactic zinc administration and swimming exercise in a transient cerebral ischemia model. The prophylactic zinc administration (2.5 mg/kg of body weight) was provided every 24 h for four days before a 30 min common carotid artery occlusion (CCAO), and 24 h after reperfusion, the rats were subjected to swimming exercise in the Morris Water Maze (MWM). Learning was evaluated daily for five days, and memory on day 12 postreperfusion; anxiety or depression-like behavior was measured by the elevated plus maze and the motor activity by open-field test. Nitrites, lipid peroxidation, and the activity of superoxide dismutase (SOD) and catalase (CAT) were assessed in the temporoparietal cortex and hippocampus. The three nitric oxide (NO) synthase isoforms, chemokines, and their receptor levels were measured by ELISA. Nissl staining evaluated hippocampus cytoarchitecture and Iba-1 immunohistochemistry activated the microglia. Swimming exercise alone could not prevent ischemic damage but, combined with prophylactic zinc administration, reversed the cognitive deficit, decreased NOS and chemokine levels, prevented tissue damage, and increased Iba-1 (+) cell number. These results suggest that the subacute prophylactic zinc administration combined with swimming exercise, but not the individual treatment, prevents the ischemic damage on day 12 postreperfusion in the transient ischemia model.


Assuntos
Natação , Zinco , Animais , Cognição , Isquemia , Aprendizagem em Labirinto , Ratos , Ratos Wistar , Zinco/farmacologia
9.
Data Brief ; 41: 108015, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35295869

RESUMO

We present the data for taurine (2-aminoethanesulfonic acid) treatment to healthy pregnant Sprague Dawley rats (SD). At embryonic day 15 (E15), healthy pregnant SD rats were given taurine treatment (50 mg/L drinking water) and then to their male offspring until they reached the age of eight months. We quantify, in the offspring, the concentration of nitric oxide (NO) through the Griess colorimetric reaction [1] and malondialdehyde + 4-hydroxyalkenals (MDA + 4-HDA) by the Gérard-Monnier technique [2]. The assessment ages for NO and MDA + 4-HDA were at postnatal day 15 (PND15), 1, 3, and 8 months of age. The body weight was measured along with the integral motor behavior in the perinatal stage through the surface righting reflex test at PND5, cliff aversion test at PND9, grip strength test at PND 11, and front limb and hindlimb suspension tests at PND13. The tests were performed accordingly with [3]. The data obtained showed that SD rats with the taurine administration performed poorly in the motor tests compared with the untreated healthy rats. The taurine-treated rats also showed increased lipid peroxidation preferentially in cerebral regions involved in motor activity, such as the medulla oblongata, the subcortical nuclei, and the cerebral cortex. However, the taurine treatment only increased NO concentration in the evaluated cerebral regions at older ages. At E15, taurine plays a pivotal role in the excitatory/inhibitory neuromodulation, presumably by acting as an excitatory neurotransmitter during the GABA-switch [4]. The increase in the taurine concentration during the embryonic period might cause excitotoxicity in healthy brains, which might lead to impairments in the motor development of the offspring. Therefore, the present datasets can be valuable for researchers who attempt to use the taurine supplement on healthy animal models at gestational stages; and explore the relation with taurine intake during pregnancy in human patients. These datasets are related to the article "Long-term taurine administration improves motor skills in a tubulinopathy rat model by decreasing oxidative stress and promoting myelination" [5].

10.
BMC Anesthesiol ; 11: 2, 2011 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-21324200

RESUMO

BACKGROUND: Postoperative hypothermia is a common cause of complications in patients who underwent laparoscopic cholecystectomy. Hypothermia is known to elicit electrophysiological, biochemical, and cellular alterations thus leading to changes in the active and passive membrane properties. These changes might influence the bioelectrical impedance (BI). Our aim was to determine whether the BI depends on the core temperature. METHODS: We studied 60 patients (52 female and 8 male) age 40 to 80 years with an ASA I-II classification that had undergone laparoscopic cholecystectomy under balanced inhalation anesthesia. The experimental group (n = 30) received active core rewarming during the transanesthetic and postanesthesic periods. The control group (n = 30) received passive external rewarming. The BI was recorded by using a 4-contact electrode system to collect dual sets of measurements in the deltoid muscle. The body temperature, hemodynamic variables, respiratory rate, blood-gas levels, biochemical parameters, and shivering were also measured. The Mann-Whitney unpaired t-test was used to determine the differences in shivering between each group at each measurement period. Measurements of body temperature, hemodynamics variables, respiratory rate, and BI were analyzed using the two-way repeated-measures ANOVA. RESULTS: The gradual decrease in the body temperature was followed by the BI increase over time. The highest BI values (95 ± 11 Ω) appeared when the lowest values of the temperature (35.5 ± 0.5°C) were reached. The active core rewarming kept the body temperature within the physiological range (over 36.5°C). This effect was accompanied by low stable values (68 ± 3 Ω) of BI. A significant decrease over time in the hemodynamic values, respiratory rate, and shivering was seen in the active core-rewarming group when compared with the controls. The temporal course of shivering was different from those of body temperatue and BI. The control patients showed a significant increase in the serum-potassium levels, which were not seen in the active-core rewarming group. CONCLUSIONS: The BI analysis changed as a function of the changes of core temperature and independently of the shivering. In addition, our results support the beneficial use of active core rewarming to prevent accidental hypothermia.

11.
Oxid Med Cell Longev ; 2021: 6696538, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34040692

RESUMO

Oxygen deprivation in newborns leads to hypoxic-ischemic encephalopathy, whose hallmarks are oxidative/nitrosative stress, energetic metabolism alterations, nutrient deficiency, and motor behavior disability. Zinc and taurine are known to protect against hypoxic-ischemic brain damage in adults and neonates. However, the combined effect of prophylactic zinc administration and therapeutic taurine treatment on intrauterine ischemia- (IUI-) induced cerebral damage remains unknown. The present work evaluated this issue in male pups subjected to transient IUI (10 min) at E17 and whose mothers received zinc from E1 to E16 and taurine from E17 to postnatal day 15 (PND15) via drinking water. We assessed motor alterations, nitrosative stress, lipid peroxidation, and the antioxidant system comprised of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). Enzymes of neuronal energetic pathways, such as aspartate aminotransferase (AST), alanine aminotransferase (ALT), and lactate dehydrogenase (LDH), were also evaluated. The hierarchization score of the protective effect of pharmacological strategies (HSPEPS) was used to select the most effective treatment. Compared with the IUI group, zinc, alone or combined with taurine, improved motor behavior and reduced nitrosative stress by increasing SOD, CAT, and GPx activities and decreasing the GSSG/GSH ratio in the cerebral cortex and hippocampus. Taurine alone increased the AST/ALT, LDH/ALT, and AST/LDH ratios in the cerebral cortex, showing improvement of the neural bioenergetics system. This result suggests that taurine improves pyruvate, lactate, and glutamate metabolism, thus decreasing IUI-caused cerebral damage and relieving motor behavior impairment. Our results showed that taurine alone or in combination with zinc provides neuroprotection in the IUI rat model.


Assuntos
Glutationa Peroxidase/metabolismo , Isquemia/tratamento farmacológico , Taurina/metabolismo , Zinco/uso terapêutico , Animais , Masculino , Ratos , Zinco/farmacologia
12.
Front Immunol ; 12: 746492, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34737747

RESUMO

B-cell acute lymphoblastic leukemia (B-ALL) results from the expansion of malignant lymphoid precursors within the bone marrow (BM), where hematopoietic niches and microenvironmental signals provide leukemia-initiating cells (LICs) the conditions to survive, proliferate, initiate disease, and relapse. Normal and malignant lymphopoiesis are highly dependent on the BM microenvironment, particularly on CXCL12-abundant Reticular (CAR) cells, which provide a niche for maintenance of primitive cells. During B-ALL, leukemic cells hijack BM niches, creating a proinflammatory milieu incompetent to support normal hematopoiesis but favoring leukemic proliferation. Although the lack of a phenotypic stem cell hierarchy is apparent in B-ALL, LICs are a rare and quiescent population potentially responsible for chemoresistance and relapse. Here, we developed novel patient-derived leukemia spheroids (PDLS), an ex vivo avatar model, from mesenchymal stromal cells (MSCs) and primary B-ALL cells, to mimic specialized niche structures and cell-to-cell intercommunication promoting normal and malignant hematopoiesis in pediatric B-ALL. 3D MSC spheroids can recapitulate CAR niche-like hypoxic structures that produce high levels of CXCL10 and CXCL11. We found that PDLS were preferentially enriched with leukemia cells displaying functional properties of LICs, such as quiescence, low reactive oxygen species, drug resistance, high engraftment in immunodeficient mice, and long-term leukemogenesis. Moreover, the combination of PDLS and patient-derived xenografts confirmed a microenvironment-driven hierarchy in their leukemic potential. Importantly, transcriptional profiles of MSC derived from primary patient samples revealed two unique signatures (1), a CXCL12low inflammatory and leukemia expansion (ILE)-like niche, that likely supports leukemic burden, and (2) a CXCL11hi immune-suppressive and leukemia-initiating cell (SLIC)-like niche, where LICs are likely sustained. Interestingly, the CXCL11+ hypoxic zones were recapitulated within the PDLS that are capable of supporting LIC functions. Taken together, we have implemented a novel PDLS system that enriches and supports leukemia cells with stem cell features driven by CXCL11+ MSCs within hypoxic microenvironments capable of recapitulating key features, such as tumor reemergence after exposure to chemotherapy and tumor initiation. This system represents a unique opportunity for designing ex vivo personalized avatars for B-ALL patients to evaluate their own LIC pathobiology and drug sensitivity in the context of the tumor microenvironment.


Assuntos
Células-Tronco Neoplásicas/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Esferoides Celulares , Nicho de Células-Tronco , Células Tumorais Cultivadas , Animais , Medula Óssea/patologia , Feminino , Xenoenxertos , Humanos , Células-Tronco Mesenquimais/patologia , Camundongos , Microambiente Tumoral
13.
Synapse ; 64(12): 941-7, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20665727

RESUMO

Haloperidol is a potent dopamine receptor antagonist and used to treat psychotic disorders, such as schizophrenia. Recent clinical and preclinical studies demonstrated the overactivity of the nitric oxide (NO) system in schizophrenia. Neonatal ventral hippocampal (nVH) lesions in rats have been widely used as a neurodevelopmental model that mimics schizophrenia-like behaviors. Here, we investigate first whether the nVH lesion causes changes in NO levels in different limbic brain regions in young adults, postnatal day (PD) 81, and second, whether haloperidol treatment from PD60 to PD81 reverses these changes, by determining the accumulation of nitrites. The results show that NO levels at the level of the prefrontal cortex, occipital cortex, and cerebellum are higher in the nVH lesion animals, and that the haloperidol, in part, attenuates these altered NO levels. The NO levels observed in the nVH lesion animals with and without haloperidol treatment may be relevant to behaviors observed in schizophrenia.


Assuntos
Haloperidol/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Óxido Nítrico/metabolismo , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Esquema de Medicação , Feminino , Hipocampo/patologia , Masculino , Óxido Nítrico/biossíntese , Ratos , Ratos Sprague-Dawley , Esquizofrenia/tratamento farmacológico , Esquizofrenia/metabolismo , Esquizofrenia/patologia
14.
Iran J Basic Med Sci ; 23(1): 93-101, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32405352

RESUMO

OBJECTIVES: Cassava (Manihot esculenta Crantz) contains cyanogenic glycosides (linamarin and lotaustralin) that have been associated with neurological disorders in humans and rats. In basal ganglia, the dopaminergic neurons of substantia nigra pars compacta (SNpc) show high cytotoxic susceptibility; therefore, the chronic consumption of cassava (CCC) could induce neurodegeneration in SNpc. In this study we examine the impact of CCC on the integrity of the nigrostriatal system, including apoptosis and microgliosis. MATERIALS AND METHODS: Male Wistar rats were administered cassava juice daily (3.57 g/kg and 28.56 g/kg, per os) or linamarin (0.15 mg/ml, IP), and its effects were evaluated in rota-rod and swim tests at days 7, 14, 21, 28, and 35 of administration. In SNpc, oxidative/nitrosative stress was determined by malondialdehyde/4-hydroxyalkenals (MDA-4-HAD) and nitrite contents. Tyrosine hydroxylase immunoreactivity (TH-IR) was evaluated in SNpc, neostriatum (NE), and nucleus accumbens (NA). Apoptosis and microgliosis were determined by active-caspase-3 (C3) and CD11b/c (OX42) expression in the medial region of SNpc. RESULTS: Chronic administration of cassava juice, or linamarin, increased motor impairment. The rats that received 28.56 g/kg cassava showed increased MDA-4-HAD content in SNpc and nitrite levels in NE with respect to controls. Significant loss of TH-IR in SNpc, NE, and NA was not found. The 28.56 g/kg cassava administration produced dopaminergic atrophy and microgliosis, whereas linamarin induced hypertrophy and C3-related apoptosis in SNpc. CONCLUSION: CCC induces cellular stress on dopaminergic neurons, which could contribute to motor impairment in the rat.

15.
Mol Neurobiol ; 56(3): 1800-1811, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29931509

RESUMO

Perinatal asphyxia in the neonatal brain triggers a robust inflammatory response in which nitric oxide (NO) generation plays a hazardous role. Increased levels of NO can be maintained by the activity of inducible NO synthase (NOS2A) on its own or activated by IL-1beta (IL-1ß) gene transcription and positive back stimulation of the NOS2 (CCTTT)n microsatellite by IL-1ß, thus potentiating brain injury after ischemic perinatal asphyxia. We investigated whether the risk for cerebral palsy (CP) increases when an expansion of the - 2.5 kb (CCTTT)n microsatellite in the NOS2A gene and a single nucleotide polymorphism (SNP) in -C511T of the IL- IL-1ß gene promoter occur in patients after perinatal hypoxic-ischemic encephalopathy. Genomic DNA was purified from peripheral leukocytes of 48 patients with CP and of 57 healthy control children. IL-1ß SNP genotypes were established using a real-time PCR technique and fluorogenic probes and were validated by restriction fragment length polymorphism (RFLP) analysis using the AvaI restriction enzyme. The length of the CCTTTn microsatellite in the NOS2 gene promoter was determined by automated sequencing. The 14 repeat-long allele of the CCTTTn NOS2A microsatellite was present in 27% of CP patients vs 12.3% of controls, showing an odds ratio (OR) = 2.6531 and 95% confidence interval (CI) = 0.9612-7.3232 (P < 0.0469). The -511 TT genotype frequency showed an OR = 2.6325 (95% CI = 1.1348-6.1066, P = 0.0189). Interestingly, the haplotype CCTTT14/TT showed an OR = 9.561 (95%, CI = 1.1321-80.753; P = 0.0164). The haplotype (CCTTT)14/TT, formed by the expansion of the - 2.5 kb (CCTTT)n microsatellite in the NOS2A gene promoter and the -511 C➝ T SNP of the IL-1ß gene promoter, might be a useful marker to identify patients who are at high risk for developing CP after hypoxic-ischemic encephalopathy.


Assuntos
Paralisia Cerebral/genética , Predisposição Genética para Doença , Óxido Nítrico Sintase Tipo II/genética , Polimorfismo de Nucleotídeo Único , Adolescente , Alelos , Estudos de Casos e Controles , Criança , Feminino , Frequência do Gene , Genótipo , Haplótipos , Humanos , Interleucina-1beta/genética , Masculino , México , Repetições de Microssatélites , Regiões Promotoras Genéticas
16.
Neuropharmacology ; 55(8): 1313-20, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18790702

RESUMO

Nitric oxide (NO) is associated with dopamine (DA) release. Previously, we demonstrated that rats treated with a non-selective nitric oxide synthase inhibitor, N-omega-nitro-L-arginine (L-NNA) at postnatal days 4-6 (PD4-6) show increased locomotion and disrupt neuronal cytoarchitecture after puberty (PD60). Here, we investigate whether the modulation of NO production in rats at PD4-6 causes long term changes of NO system, its impact on DA innervation, and schizophrenia-like behaviors. NO levels were measured in seven brain areas at PD35, PD60, PD90, and PD120. Autoradiographic studies explored the effect of l-NNA on the expression of D1 and D2 receptors in the caudate-putamen (CPu) and nucleus accumbens (NAcc) at PD60. Locomotor activity was assessed at PD60 using the non-selective DA agonists, amphetamine and apomorphine, and the selective DA receptor agonist [D2, quinpirole; D3, 7-hydroxy-N,N-di-n-propylaminotetralin ((+/-)-7-OH-DPAT)]. L-NNA treatment produced decreases in NO levels in the frontal cortex, striatum, brainstem and cerebellum, while in the occipital cortex changes were observed at PD120. Hippocampus and temporoparietal cortex showed differential levels of NO. Receptor autoradiography revealed increases in D1 receptor levels in the NAcc (shell), while decreases in D2 receptor binding were observed in the CPu and NAcc (core). Amphetamine and quinpirole treatments resulted in increases in locomotion. In contrast, treatment with 7-OH-DPAT produced hypolocomotion at low doses, while increased locomotion was seen at the highest dose. These results show that modulation of NO levels early postnatally (PD4-6) produces long term alteration in NO levels, with possible consequences on DA transmission, and related behaviors relevant to schizophrenia.


Assuntos
Estimulantes do Sistema Nervoso Central/farmacologia , Dextroanfetamina/farmacologia , Inibidores Enzimáticos/farmacologia , Atividade Motora/efeitos dos fármacos , Óxido Nítrico/metabolismo , Nitroarginina/farmacologia , Fatores Etários , Análise de Variância , Animais , Animais Recém-Nascidos , Autorradiografia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Dopaminérgicos/farmacologia , Feminino , Gravidez , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Fatores de Tempo
17.
Oxid Med Cell Longev ; 2018: 9416432, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30258527

RESUMO

In the cerebral hypoxia-ischemia rat model, the prophylactic administration of zinc can cause either cytotoxicity or preconditioning effect, whereas the therapeutic administration of selenium decreases the ischemic damage. Herein, we aimed to explore whether supplementation of low doses of prophylactic zinc and therapeutic selenium could protect from a transient hypoxic-ischemic event. We administrated zinc (0.2 mg/kg of body weight; ip) daily for 14 days before a 10 min common carotid artery occlusion (CCAO). After CCAO, we administrated sodium selenite (6 µg/kg of body weight; ip) daily for 7 days. In the temporoparietal cerebral cortex, we determined nitrites by the Griess method and lipid peroxidation by the Gerard-Monnier assay. qPCR was used to measure mRNA of nitric oxide synthases, antioxidant enzymes, chemokines, and their receptors. We measured the enzymatic activity of SOD and GPx and protein levels of chemokines and their receptors by ELISA. We evaluated long-term memory using the Morris-Water maze test. Our results showed that prophylactic administration of zinc caused a preconditioning effect, decreasing nitrosative/oxidative stress and increasing GPx and SOD expression and activity, as well as eNOS expression. The therapeutic administration of selenium maintained this preconditioning effect up to the late phase of hypoxia-ischemia. Ccl2, Ccr2, Cxcl12, and Cxcr4 were upregulated, and long-term memory was improved. Pyknotic cells were decreased suggesting prevention of neuronal cell death. Our results show that the prophylactic zinc and therapeutic selenium administration induces effective neuroprotection in the early and late phases after CCAO.


Assuntos
Antioxidantes/metabolismo , Córtex Cerebral/efeitos dos fármacos , Hipóxia-Isquemia Encefálica/metabolismo , Memória/efeitos dos fármacos , Fármacos Neuroprotetores/administração & dosagem , Selenito de Sódio/administração & dosagem , Zinco/administração & dosagem , Animais , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar
18.
Brain Res ; 1121(1): 221-30, 2006 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-17022950

RESUMO

We have previously reported progressive reactive astrocytes in the cerebellum of taiep rats, one of the most regions affected by demyelination, and activation of cerebellar glial cells in vitro. Based on the hypothesis that activated glial cells produce high levels of reactive nitrogen intermediates, we assessed the production of nitric oxide (NO) and the expression of the three NO synthases (NOS) in the cerebellum of 6-month-old taiep rats. A significant 40% increase of NO levels was measured in taiep rats when compared with controls. The protein and mRNA levels of the three NOS isoforms were also significantly increased. In contrast to controls, immunostaining assays against nNOS or iNOS showed an increased number of immunoreactive glial cells in the granular layer (nNOS) and Purkinje layer (iNOS) of cerebellum of taiep rats. Microglia-macrophages and both CD4- and CD8-immunoreactive cells were observed in cerebellar white matter of taiep rats only, thus suggesting other possible cell sources of those NOSs. Differences in the cellular location for eNOS immunoreactivity were not observed. The enhanced levels of NO, NOS proteins, mRNAs, and NOS immunoreactivities in glial cells and microglia strongly suggest glial activation together with the professional immune cells can aggravate the demyelination of aged taiep rats.


Assuntos
Cerebelo/metabolismo , Doenças Desmielinizantes/metabolismo , Óxido Nítrico Sintase/genética , Óxido Nítrico/metabolismo , Animais , Cerebelo/enzimologia , Primers do DNA , Doenças Desmielinizantes/enzimologia , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Isoenzimas/genética , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo III/genética , Ratos , Ratos Endogâmicos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
J Immunol Res ; 2016: 4039837, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27635404

RESUMO

Acute and subacute administration of zinc exert neuroprotective effects in hypoxia-ischemia animal models; yet the effect of chronic administration of zinc still remains unknown. We addressed this issue by injecting zinc at a tolerable dose (0.5 mg/kg weight, i.p.) for 14 days before common carotid artery occlusion (CCAO) in a rat. After CCAO, the level of zinc was measured by atomic absorption spectrophotometry, nitrites were determined by Griess method, lipoperoxidation was measured by Gerard-Monnier assay, and mRNA expression of 84 genes coding for cytokines, chemokines, and their receptors was measured by qRT-PCR, whereas nitrotyrosine, chemokines, and their receptors were assessed by ELISA and histopathological changes in the temporoparietal cortex-hippocampus at different time points. Long-term memory was evaluated using Morris water maze. Following CCAO, a significant increase in nitrosative stress, inflammatory chemokines/receptors, and cell death was observed after 8 h, and a 2.5-fold increase in zinc levels was detected after 7 days. Although CXCL12 and FGF2 protein levels were significantly increased, the long-term memory was impaired 12 days after reperfusion in the Zn+CCAO group. Our data suggest that the chronic administration of zinc at tolerable doses causes nitrosative stress, toxic zinc accumulation, and neuroinflammation, which might account for the neuronal death and cerebral dysfunction after CCAO.


Assuntos
Cloretos/administração & dosagem , Cloretos/toxicidade , Hipóxia-Isquemia Encefálica/fisiopatologia , Neuroimunomodulação/efeitos dos fármacos , Fármacos Neuroprotetores/administração & dosagem , Compostos de Zinco/administração & dosagem , Compostos de Zinco/toxicidade , Animais , Quimiocinas/genética , Quimiocinas/metabolismo , Cloretos/metabolismo , Modelos Animais de Doenças , Esquema de Medicação , Fator 2 de Crescimento de Fibroblastos/sangue , Hipocampo/efeitos dos fármacos , Hipocampo/fisiopatologia , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Hipóxia-Isquemia Encefálica/imunologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/toxicidade , Nitritos/metabolismo , Ratos , Ratos Wistar , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/metabolismo , Compostos de Zinco/metabolismo
20.
Oxid Med Cell Longev ; 2015: 397310, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25883747

RESUMO

Taiep rat has a failure in myelination and remyelination processes leading to a state of hypomyelination throughout its life. Chemokines, which are known to play a role in inflammation, are also involved in the remyelination process. We aimed to demonstrate that remyelination-stimulating factors are altered in the brainstem of 1- and 6-month-old taiep rats. We used a Rat RT(2) Profiler PCR Array to assess mRNA expression of 84 genes coding for cytokines, chemokines, and their receptors. We also evaluated protein levels of CCL2, CCR1, CCR2, CCL5, CCR5, CCR8, CXCL1, CXCR2, CXCR4, FGF2, and VEGFA by ELISA. Sprague-Dawley rats were used as a control. PCR Array procedure showed that proinflammatory cytokines were not upregulated in the taiep rat. In contrast, some mRNA levels of beta and alpha chemokines were upregulated in 1-month-old rats, but CXCR4 was downregulated at their 6 months of age. ELISA results showed that CXCL1, CCL2, CCR2, CCR5, CCR8, and CXCR4 protein levels were decreased in brainstem at the age of 6 months. These results suggest the presence of a chronic neuroinflammation process with deficiency of remyelination-stimulating factors (CXCL1, CXCR2, and CXCR4), which might account for the demyelination in the taiep rat.


Assuntos
Quimiocinas/análise , Bainha de Mielina/metabolismo , Receptores de Quimiocinas/análise , Animais , Quimiocinas/genética , Quimiocinas/metabolismo , Regulação para Baixo , Ensaio de Imunoadsorção Enzimática , Microscopia de Fluorescência , Bainha de Mielina/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/metabolismo , Transcriptoma , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA