Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 164(6): 1277-1287, 2016 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26967293

RESUMO

Insect life strategies comprise all levels of sociality from solitary to eusocial, in which individuals form persistent groups and divide labor. With increasing social complexity, the need to communicate a greater diversity of messages arose to coordinate division of labor, group cohesion, and concerted actions. Here we summarize the knowledge on prominent messages in social insects that inform about reproduction, group membership, resource locations, and threats and discuss potential evolutionary trajectories of each message in the context of social complexity.


Assuntos
Comunicação Animal , Insetos/fisiologia , Animais , Comportamento Animal , Evolução Biológica , Insetos/classificação , Insetos/genética , Feromônios/metabolismo
2.
New Phytol ; 220(3): 739-749, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-28256726

RESUMO

Chemical communication is ubiquitous. The identification of conserved structural elements in visual and acoustic communication is well established, but comparable information on chemical communication displays (CCDs) is lacking. We assessed the phenotypic integration of CCDs in a meta-analysis to characterize patterns of covariation in CCDs and identified functional or biosynthetically constrained modules. Poorly integrated plant CCDs (i.e. low covariation between scent compounds) support the notion that plants often utilize one or few key compounds to repel antagonists or to attract pollinators and enemies of herbivores. Animal CCDs (mostly insect pheromones) were usually more integrated than those of plants (i.e. stronger covariation), suggesting that animals communicate via fixed proportions among compounds. Both plant and animal CCDs were composed of modules, which are groups of strongly covarying compounds. Biosynthetic similarity of compounds revealed biosynthetic constraints in the covariation patterns of plant CCDs. We provide a novel perspective on chemical communication and a basis for future investigations on structural properties of CCDs. This will facilitate identifying modules and biosynthetic constraints that may affect the outcome of selection and thus provide a predictive framework for evolutionary trajectories of CCDs in plants and animals.


Assuntos
Evolução Biológica , Vias Biossintéticas , Animais , Fenótipo , Compostos Orgânicos Voláteis/metabolismo
3.
J Chem Ecol ; 43(4): 385-402, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28386800

RESUMO

Stingless bees (Hymenoptera, Apidae: Meliponini) represent a highly diverse group of social bees confined to the world's tropics and subtropics. They show a striking diversity of structural and behavioral adaptations and are important pollinators of tropical plants. Despite their diversity and functional importance, their ecology, and especially chemical ecology, has received relatively little attention, particularly compared to their relative the honeybee, Apis mellifera. Here, I review various aspects of the chemical ecology of stingless bees, from communication over resource allocation to defense. I list examples in which functions of specific compounds (or compound groups) have been demonstrated by behavioral experiments, and show that many aspects (e.g., queen-worker interactions, host-parasite interactions, neuronal processing etc.) remain little studied. This review further reveals that the vast majority of studies on the chemical ecology of stingless bees have been conducted in the New World, whereas studies on Old World stingless bees are still comparatively rare. Given the diversity of species, behaviors and, apparently, chemical compounds used, I suggest that stingless bees provide an ideal subject for studying how functional context and the need for species specificity may interact to shape pheromone diversification in social insects.


Assuntos
Abelhas/fisiologia , Hidrocarbonetos/metabolismo , Feromônios/fisiologia , Animais , Abelhas/crescimento & desenvolvimento , Abelhas/metabolismo , Comportamento Animal , Feminino , Interações Hospedeiro-Parasita , Hidrocarbonetos/química , Larva , Masculino , Valor Nutritivo , Odorantes , Feromônios/química , Néctar de Plantas/química , Pólen/química , Polinização , Especificidade da Espécie
4.
Oecologia ; 176(4): 943-53, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25205030

RESUMO

Biodiverse environments provide a variety of resources that can be exploited by consumers. While many studies revealed a positive correlation between biodiversity and consumer biomass and richness, only few studies have investigated how resource diversity affects single consumers. To better understand whether a single consumer species benefits from diverse resources, we tested how the protective function of a defensive plant resource (i.e. resin exploited by social bees) varied among different sources and target organisms (predators, parasites and pathogens). To assess synergistic effects, resins from different plant genera were tested separately and in combination. We found that resin diversity is beneficial for bees, with its functional properties depending on the target organisms, type and composition of resin. Different resins showed different effects, and mixtures were more effective than some of the single resins (functional complementarity). We conclude that resins of different plant species target different organisms and act synergistically where combined. Bees that rely on resin for protection benefit more when they have access to diverse resin sources. Loss of biodiversity may in turn destabilize consumer populations due to restricted access to a variety of resources.


Assuntos
Abelhas , Biodiversidade , Dinâmica Populacional , Resinas Vegetais , Animais , Biomassa
5.
Ecol Evol ; 14(2): e10879, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38343567

RESUMO

Stingless bees are important pollinators in tropical forests. Yet, we know little about their foraging behavior (e.g., their nutritional requirements or their floral sources visited for resource collection). Many stingless bees not only depend vitally on pollen and nectar for food but also on resin for nest building and/or defense. However, it is unclear whether the large effort devoted to collecting resin as a non-food resource by certain stingless bees affects their foraging behavior. Therefore, in this study, we analyzed differences in foraging patterns (i.e., foraging activity, proportion of collected resources, and specialization in plants visited) and resource nutritional composition (i.e., sucrose amount in nectar and amino acids in pollen) of seven different stingless bee species (eleven wild colonies) in north-western Ecuador with a particular focus on the role of resin collection. We found that species with a high resin intake tended to be more active than species with a low resin intake. The foragers per minute invested for pollen collection were similar across all species. Sucrose intake per minute differed between some species but was not affected by increased resin intake. Interestingly, high and low resin collectors partly differed in the plants visited for pollen collection. Pollen amino acid profiles largely, but not completely, overlapped between the two resin collection groups. Our findings show that the foraging patterns and plant choices of stingless bees may vary depending on their resin intake, highlighting the need for more research focusing on resin collection and use by stingless bees.


Las abejas sin aguijón son polinizadores importantes en los bosques tropicales. Sin embargo, sabemos poco acerca de su comportamiento de forrajeo (e.g., sus requisitos nutricionales o las fuentes florales visitadas para la recolección de recursos). Muchas abejas sin aguijón dependen vitalmente no solo de polen y de néctar como alimento, sino también de resinas para la construcción de su nido y/o defensa. Sin embargo, no está claro si el gran esfuerzo dedicado a la recolección de resina como recurso no alimentario de ciertas abejas sin aguijón afecta su comportamiento de forrajeo. Por lo tanto, en este estudio, analizamos las diferencias en los patrones de forrajeo (i.e., actividad de forrajeo, proporción de recursos recolectados y especialización en las plantas visitadas) y la composición nutricional de los recursos recolectados (i.e., cantidad de sacarosa en el néctar y de aminoácidos en el polen) de siete especies diferentes de abejas sin aguijón (once colonias silvestres) en el noroeste de Ecuador, con un enfoque particular en el rol de la recolección de resina. Encontramos que las especies con una recolección alta de resina tienden a ser más activas que las especies con una recolección baja de resina. La cantidad de forrajeadores por minuto dedicada a la recolección de polen fue similar en todas las especies. La ingesta de sacarosa por minuto difirió entre algunas especies, pero no se vio afectada por un aumento en la recolección de resina. Interesantemente, las abejas con una recolección alta y baja de resina difirieron parcialmente en las plantas que visitaron para la recolección de polen. Entre los dos grupos de recolección de resina también hubo diferencias con respecto al perfil de aminoácidos en el polen que recolectaron. El perfil de aminoácidos se sobrelapaba, pero no completamente, entre los dos grupos. Nuestros resultados muestran que los patrones de forrajeo y las elecciones de plantas de las abejas sin aguijón pueden variar según su consumo de resina, destacando la necesidad de hacer más investigaciones centradas en la recolección y el uso de resina por parte de las abejas sin aguijón.

6.
Ecol Evol ; 12(5): e8919, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35600696

RESUMO

Biodiversity loss, as often found in intensively managed agricultural landscapes, correlates with reduced ecosystem functioning, for example, pollination by insects, and with altered plant composition, diversity, and abundance. But how does this change in floral resource diversity and composition relate to occurrence and resource use patterns of trap-nesting solitary bees? To better understand the impact of land-use intensification on communities of trap-nesting solitary bees in managed grasslands, we investigated their pollen foraging, reproductive fitness, and the nutritional quality of larval food along a land-use intensity gradient in Germany. We found bee species diversity to decrease with increasing land-use intensity irrespective of region-specific community compositions and interaction networks. Land use also strongly affected the diversity and composition of pollen collected by bees. Lack of suitable pollen sources likely explains the absence of several bee species at sites of high land-use intensity. The only species present throughout, Osmia bicornis (red mason bee), foraged on largely different pollen sources across sites. In doing so, it maintained a relatively stable, albeit variable nutritional quality of larval diets (i.e., protein to lipid (P:L) ratio). The observed changes in bee-plant pollen interaction patterns indicate that only the flexible generalists, such as O. bicornis, may be able to compensate the strong alterations in floral resource landscapes and to obtain food of sufficient quality through readily shifting to alternative plant sources. In contrast, other, less flexible, bee species disappear.

7.
Philos Trans R Soc Lond B Biol Sci ; 377(1853): 20210171, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35491605

RESUMO

Bee performance and well-being strongly depend on access to sufficient and appropriate resources, in particular pollen and nectar of flowers, which constitute the major basis of bee nutrition. Pollen-derived microbes appear to play an important but still little explored role in the plant pollen-bee interaction dynamics, e.g. through affecting quantities and ratios of important nutrients. To better understand how microbes in pollen collected by bees may affect larval health through nutrition, we investigated correlations between the floral, bacterial and nutritional composition of larval provisions and the gut bacterial communities of the solitary megachilid bee Osmia bicornis. Our study reveals correlations between the nutritional quality of pollen provisions and the complete bacterial community as well as individual members of both pollen provisions and bee guts. In particular pollen fatty acid profiles appear to interact with specific members of the pollen bacterial community, indicating that pollen-derived bacteria may play an important role in fatty acid provisioning. As increasing evidence suggests a strong effect of dietary fatty acids on bee performance, future work should address how the observed interactions between specific fatty acids and the bacterial community in larval provisions relate to health in O. bicornis. This article is part of the theme issue 'Natural processes influencing pollinator health: from chemistry to landscapes'.


Assuntos
Ácidos Graxos , Microbiota , Animais , Bactérias , Abelhas , Larva/microbiologia , Pólen/microbiologia
8.
J Chem Ecol ; 37(1): 98-104, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21165680

RESUMO

Stingless bees (Apidae: Meliponini) are the most diverse group of Apid bees and represent common pollinators in tropical ecosystems. Like honeybees they live in large eusocial colonies and rely on complex chemical recognition and communication systems. In contrast to honeybees, their ecology and especially their chemical ecology have received only little attention, particularly in the Old World. We previously have analyzed the chemical profiles of six paleotropical stingless bee species from Borneo and revealed the presence of species-specific cuticular terpenes- an environmentally derived compound class so far unique among social insects. Here, we compared the bees' surface profiles to the chemistry of their nest material. Terpenes, alkanes, and alkenes were the dominant compound groups on both body surfaces and nest material. However, bee profiles and nests strongly differed in their chemical composition. Body surfaces thus did not merely mirror nests, rendering a passive compound transfer from nests to bees unlikely. The difference between nests and bees was particularly pronounced when all resin-derived compounds (terpenes) were excluded and only genetically determined compounds were considered. When terpenes were included, bee profiles and nest material still differed, because whole groups of terpenes (e.g., sesquiterpenes) were found in nest material of some species, but missing in their chemical profile, indicating that bees are able to influence the terpene composition both in their nests and on their surfaces.


Assuntos
Abelhas/metabolismo , Animais , Bornéu , Ecossistema , Comportamento de Nidação , Especificidade da Espécie , Terpenos/metabolismo
9.
J Chem Ecol ; 37(10): 1117-26, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21948201

RESUMO

Colonies of the stingless bee Tetragonilla collina frequently occur in unusually high densities and in direct neighborhood (nest aggregations), in rainforests of Southeast Asia. To investigate whether close relatedness and/or similar chemical profiles facilitate the co-occurrence of multiple T. collina colonies, we investigated aggressive behavior, genetic relatedness and cuticular hydrocarbon (CHC) profiles within and between colonies and nest aggregations. Although 17 out of 19 colonies within aggregations were largely unrelated, intraspecific aggression between different colonies was basically absent both within and among aggregations. This lack of aggression should favor social parasitism and hence the occurrence of unrelated individuals within a colony. However, low within-colony relatedness was found in only five out of 19 colonies where it may be explained by queen turnover or the occurrence of foreign workers. CHC profiles of colonies within and among aggregations were statistically different. However, many workers could chemically not be assigned to their maternal colony, indicating considerable overlap among colonies in odor profiles of workers. Moreover, odor profiles tended to be more similar within than among aggregations, although most colonies were unrelated. Thus, CHC profiles were a poor indicator of relatedness in T. collina. The lack of correlation between relatedness and chemical similarity in T. collina may be explained by the incorporation of resin-derived terpenes in their CHC profiles. The composition of these terpenes was highly similar among colonies, particularly within aggregations, hence potentially decreasing chemical distinctiveness and increasing behavioral tolerance.


Assuntos
Abelhas/química , Abelhas/genética , Comportamento de Nidação , Agressão , Animais , DNA/genética , Hidrocarbonetos/análise , Repetições de Microssatélites
10.
PLoS One ; 14(2): e0210594, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30726258

RESUMO

Honeybees (Apis mellifera) are threatened by numerous pathogens and parasites. To prevent infections they apply cooperative behavioral defenses, such as allo-grooming and hygiene, or they use antimicrobial plant resin. Resin is a chemically complex and highly variable mixture of many bioactive compounds. Bees collect the sticky material from different plant species and use it for nest construction and protection. Despite its importance for colony health, comparatively little is known about the precise origins and variability in resin spectra collected by honeybees. To identify the botanical resin sources of A. mellifera in Western Europe we chemically compared resin loads of individual foragers and tree resins. We further examined the resin intake of 25 colonies from five different apiaries to assess the effect of location on variation in the spectra of collected resin. Across all colonies and apiaries, seven distinct resin types were categorized according to their color and chemical composition. Matches between bee-collected resin and tree resin indicated that bees used poplar (Populus balsamifera, P. x canadensis), birch (Betula alba), horse chestnut (Aesculus hippocastanum) and coniferous trees (either Picea abies or Pinus sylvestris) as resin sources. Our data reveal that honeybees collect a comparatively broad and variable spectrum of resin sources, thus assuring protection against a variety of antagonists sensitive to different resins and/or compounds. We further unravel distinct preferences for specific resins and resin chemotypes, indicating that honeybees selectively search for bioactive resin compounds.


Assuntos
Abelhas/fisiologia , Própole/metabolismo , Resinas Vegetais/metabolismo , Animais , Anti-Infecciosos/metabolismo , Europa (Continente) , Árvores
11.
Environ Pollut ; 245: 531-544, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30466072

RESUMO

Veterinary antibiotics are widely used in livestock production and can be released to the environment via manure, affecting non-target organisms. Recent studies provide evidence that antibiotics can adversely affect both plants and insects but whether antibiotics in soil also affect trophic interactions is unknown. We tested whether antibiotics grown in sand as soil substitute with environmentally relevant concentrations of penicillin, sulfadiazine and tetracycline affect the survival of aphids feeding on plants (two crop and one non-crop plant species). Apera spica-venti, Brassica napus, and Triticum aestivum individuals were infested with aphids that were monitored over four weeks. We did not observe effects of penicillin or tetracycline on plants or aphids. However, sulfadiazine treatments reduced plant growth and increased mortality in the two tested grass species, but not in B. napus. Sulfadiazine subsequently decreased aphid density indirectly through reduced host plant biomass. We thus show that an antibiotic at realistic concentrations in a soil substitute can affect several trophic levels, i.e. plants and herbivores. This study contributes to the environmental risk assessment of veterinary antibiotics as it implies that their use potentially affects plant-insect interactions at environmentally relevant concentrations.


Assuntos
Antibacterianos/toxicidade , Afídeos/efeitos dos fármacos , Penicilinas/toxicidade , Sulfadiazina/toxicidade , Tetraciclina/toxicidade , Triticum/crescimento & desenvolvimento , Animais , Biomassa , Esterco/análise , Solo/química
12.
AoB Plants ; 9(2): plx010, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28439396

RESUMO

Antibiotics of veterinary origin are released to agricultural fields via grazing animals or manure. Possible effects on human health through the consumption of antibiotic exposed crop plants have been intensively investigated. However, information is still lacking on the effects of antibiotics on plants themselves, particularly on non-crop species, although evidence suggests adverse effects of antibiotics on growth and performance of plants. This study evaluated the effects of three major antibiotics, penicillin, sulfadiazine and tetracycline, on the germination rates and post-germinative traits of four plant species during ontogenesis and at the time of full development. Antibiotic concentrations were chosen as to reflect in vivo situations, i.e. concentrations similar to those detected in soils. Plant species included two herb species and two grass species, and represent two crop-species and two non-crop species commonly found in field margins, respectively. Germination tests were performed in climate chambers and effects on the remaining plant traits were determined in greenhouse experiments. Results show that antibiotics, even in small concentrations, significantly affect plant traits. These effects include delayed germination and post-germinative development. Effects were species and functional group dependent, with herbs being more sensitive to antibiotics then grasses. Responses were either negative or positive, depending on plant species and antibiotic. Effects were generally stronger for penicillin and sulfadiazine than for tetracycline. Our study shows that cropland species respond to the use of different antibiotics in livestock industry, for example, with delayed germination and lower biomass allocation, indicating possible effects on yield in farmland fertilized with manure containing antibiotics. Also, antibiotics can alter the composition of plant species in natural field margins, due to different species-specific responses, with unknown consequences for higher trophic levels.

13.
PLoS One ; 10(9): e0138868, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26418155

RESUMO

Tree invasions have substantial impacts on biodiversity and ecosystem functioning, and trees that are dispersed by animals are more likely to become invasive. In addition, hybridisation between plants is well documented as a source of new weeds, as hybrids gain new characteristics that allow them to become invasive. Corymbia torelliana is an invasive tree with an unusual animal dispersal mechanism: seed dispersal by stingless bees, that hybridizes readily with other species. We examined hybrids between C. torelliana and C. citriodora subsp. citriodora to determine whether hybrids have inherited the seed dispersal characteristics of C. torelliana that allow bee dispersal. Some hybrid fruits displayed the characteristic hollowness, resin production and resin chemistry associated with seed dispersal by bees. However, we did not observe bees foraging on any hybrid fruits until they had been damaged. We conclude that C. torelliana and C. citriodora subsp. citriodora hybrids can inherit some fruit characters that are associated with dispersal by bees, but we did not find a hybrid with the complete set of characters that would enable bee dispersal. However, around 20,000 hybrids have been planted in Australia, and ongoing monitoring is necessary to identify any hybrids that may become invasive.


Assuntos
Abelhas/fisiologia , Quimera/crescimento & desenvolvimento , Eucalyptus/genética , Resinas Vegetais/química , Dispersão de Sementes/fisiologia , Animais , Austrália , Biodiversidade , Quimera/genética , Ecossistema , Eucalyptus/anatomia & histologia , Eucalyptus/química , Comportamento Alimentar , Frutas/anatomia & histologia , Hibridização Genética/genética , Espécies Introduzidas , Sementes/química
14.
Artigo em Inglês | MEDLINE | ID: mdl-17639411

RESUMO

Ants use cuticular hydrocarbons (CHC-profiles) as multicomponent recognition cues to identify colony members (nestmates). Recognition cues (label) are thought to be perceived during ant-ant encounters and compared to a neuronal template that represents the colony label. Over time, the CHC-profile may change, and the template is adjusted accordingly. A phenotype mismatch between label and template, as happens with CHC-profiles of foreign workers (non-nestmates), frequently leads to aggressive behavior. We investigated the template reformation in workers of the carpenter ant Camponotus floridanus by masking their antennae with postpharyngeal gland (PPG) extracts from nestmates or non-nestmates. The behavioral response of manipulated workers encountering unmanipulated workers was measured independently after 2 and after 15 h. After 2 h of incubation, workers treated with either of the two PPG-extracts showed low aggression towards nestmates and high aggression towards non-nestmates. In contrast, after 15 h of incubation, workers treated with non-nestmate PPG-extract showed low aggression towards both nestmates and non-nestmates. The slow (>2 h) adjustment of the template indicates a reformation localized in the central nervous system rather than in chemosensory neurons. In addition, our data show that template adjustment to a new CHC-profile does not impair the assessment of the old CHC-profile as nestmate label.


Assuntos
Formigas/fisiologia , Reconhecimento Psicológico/fisiologia , Comportamento Social , Agressão , Animais , Hidrocarbonetos , Masculino , Neurônios Aferentes/fisiologia , Estimulação Química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA