Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Br J Nutr ; : 1-40, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38634266

RESUMO

Effects of acute thermal exposures on appetite appear hypothetical in reason of very heterogeneous methodologies. The aim of this study was therefore to clearly define the effects of passive 24-h cold (16°C) and heat (32°C) exposures on appetitive responses compared to a thermo neutral condition (24°C). Twenty-three healthy, young, and active male participants realised three sessions (from 1 pm) in a laboratory conceived like an apartment dressed with the same outfit (Clo=1). Three meals composed of three or four cold or warm dishes were served ad libitum to assess energy intake (EI). Leeds Food Preference Questionnaires were used before each meal to assess food reward. Subjective appetite was regularly assessed and levels of appetitive hormones (acylated ghrelin, GLP-1, leptin, and PYY) were assessed before and after the last meal (lunch). Contrary to the literature, total EI was not modified by cold or heat exposure (p=0.120). Accordingly, hunger scores (p=0.554) were not altered. Levels of acylated ghrelin and leptin were marginally higher during the 16 (p=0.032) and 32°C (p<0.023) sessions, respectively. Interestingly, implicit wanting for cold and low-fat foods at 32°C and for warm and high-fat foods at 16°C were increased during the whole exposure (p < 0.024). Moreover, cold entrées were more consumed at 32 °C (p<0.062) and warm main dishes more consumed at 16°C (p<0.025). Thus, passive cold and hot exposures had limited effects on appetite and it seems that offering some choice based on food temperature may help individuals to express their specific food preferences and maintain EI.

2.
Am J Physiol Regul Integr Comp Physiol ; 324(1): R58-R69, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36374177

RESUMO

The neuromuscular system can quickly adapt to exercise-induced muscle damage (EIMD), such that it is less affected by subsequent damaging exercise, a phenomenon known as the repeated bout effect (RBE). Circulating muscle-specific microRNAs (myomiRs) may be able to potentially predict the long-lasting maximal voluntary contraction (MVC) torque deficit (>24 h), an indicator of EIMD. We aimed to investigate: 1) how plasma myomiR levels are modified by the RBE and 2) whether plasma myomiRs can predict the long-lasting MVC torque deficit. Nineteen participants performed two identical bouts of loaded downhill walking separated by 2 wk. MVC torque, creatine kinase (CK) activity, myoglobin (Mb) concentration, and myomiR levels were measured before and up to 48 h after exercise. Correlation and multiple regression analyses were performed to assess the ability of these markers to predict the largest MVC torque loss beyond 24 h postexercise. Similar to MVC torque, CK activity, and the Mb concentration, the relative abundance of certain myomiRs (hsa-miR-1-3p, and hsa-miR-133a-3p) was less affected after the second bout of exercise relative to the first bout. The CK activity, Mb concentration, and level of several myomiRs (hsa-miR-1-3p, hsa-miR-133a-3p, and hsa-miR-206) correlated with long-lasting MVC torque loss. Multiple regression showed that the best combination of markers to predict the long-lasting deficit of MVC torque included several myomiRs, Mb, and CK. Certain myomiR levels increased less after exercise bout 2 than after exercise bout 1, indicating the presence of the RBE. The measurement of myomiR levels in combination with Mb concentrations and CK activity could improve the prediction of the long-lasting MVC torque deficit.NEW & NOTEWORTHY The present study is the first to show that plasma muscle-specific microRNA (myomiR) levels can be modified by the repeated bout effect, as their levels increased less after the second exercise bout relative to the first. This study is also the first to suggest that myomiR levels could be used to partially predict maximal voluntary contraction torque loss at 24 h postexercise (i.e., the magnitude of exercise-induced muscle damage). Interestingly, the combined measurement of certain myomiR levels with those of myoglobin and creatine kinase improved the predictive value.


Assuntos
MicroRNA Circulante , Exercício Físico , MicroRNAs , Músculo Esquelético , Humanos , MicroRNA Circulante/genética , Creatina Quinase , Contração Muscular/fisiologia , Músculo Esquelético/lesões , Músculo Esquelético/fisiologia , Mioglobina
3.
J Therm Biol ; 77: 145-156, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30196894

RESUMO

Heat acclimatization may help personnel who travel to areas with a hot climate (WBGT > 27 °C), making them operationally more efficient and performant through improvements in physiological and psychological parameters. Their work-related physical activities may aid active heat acclimatization. However, it is unknown whether adding physical training to improve adaptation is effective, particularly if there is sufficient time for full acclimatization, classically reached after 15 days. Thirty French soldiers (Training group, T) performed a progressive and moderate (from three to five 8-min running sets at 50-60% of their speed at VO2max with 4-min periods of active recovery in between) aerobic training program upon arriving at their base in United Arab Emirates (~40 °C and 20% RH). A control group (30 soldiers; No Training, NT) continued to perform only their usual outdoor military activities (~5 h d-1). A field heat stress test (HST: three 8-min running sets at 50% of the speed at VO2max) was performed before (D0), during (D10), and after (D15) the heat acclimatization period to assess physiological and psychological changes. An 8-km trial in battledress was then performed at D17. Although physiological modifications were mostly similar (p < 0.001 for all) for both groups (rectal temperature at the end of the HST: -0.58 ±â€¯0.51 vs -0.53 ±â€¯0.40 °C, HR at the end of the HST: -21 ±â€¯12 vs -19 ±â€¯9 bpm, and sweat osmolality: -47 ±â€¯30 vs -26 ±â€¯32 mOsmol.l-1 between D15 and D0 for T and NT groups, respectively), thermal discomfort (-31 ±â€¯4 vs -11 ±â€¯5 mm between D15 and D0, p = 0.001) and rates of perceived exertion (-3.0 ±â€¯0.4 vs -1.4 ±â€¯0.3 D15 and D0, p = 0.001) were much lower in the T than NT group during the HST. HST-induced modifications in facial temperature only decreased in the T group (-1.08 ±â€¯0.28 between D15 and D0, p < 0.001). Moreover, there was a difference in perceived thermal discomfort during the 8-km trial (40 ±â€¯20 vs 55 ±â€¯22 mm for the T and NT groups, respectively, p = 0.010). Thus, a 15-day, low-volume training regimen during a mission in a hot and dry environment has a modest impact on physiological adaptation but strongly decreases the perceived strain of exertion and climate potentially via greater reductions in facial temperature, even during a classical operational physical task in a military context.


Assuntos
Aclimatação , Exercício Físico , Resposta ao Choque Térmico , Sudorese , Adaptação Psicológica , Adulto , Temperatura Corporal , Clima , Temperatura Alta , Humanos , Militares , Corrida , Adulto Jovem
4.
Front Med (Lausanne) ; 9: 1000786, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36405624

RESUMO

This study investigates whether a functional single nucleotide polymorphism of HMOX2 (heme oxygenase-2) (rs4786504 T>C) is involved in individual chemosensitivity to acute hypoxia, as assessed by ventilatory responses, in European individuals. These responses were obtained at rest and during submaximal exercise, using a standardized and validated protocol for exposure to acute normobaric hypoxia. Carriers of the ancestral T allele (n = 44) have significantly lower resting and exercise hypoxic ventilatory responses than C/C homozygous carriers (n = 40). In the literature, a hypoxic ventilatory response threshold to exercise has been identified as an independent predictor of severe high altitude-illness (SHAI). Our study shows that carriers of the T allele have a higher risk of SHAI than carriers of the mutated C/C genotype. Secondarily, we were also interested in COMT (rs4680 G > A) polymorphism, which may be indirectly involved in the chemoreflex response through modulation of autonomic nervous system activity. Significant differences are present between COMT genotypes for oxygen saturation and ventilatory responses to hypoxia at rest. In conclusion, this study adds information on genetic factors involved in individual vulnerability to acute hypoxia and supports the critical role of the ≪ O2 sensor ≫ - heme oxygenase-2 - in the chemosensitivity of carotid bodies in Humans.

5.
Front Physiol ; 8: 419, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28670286

RESUMO

Personnel who travel to areas with a hot climate (WBGT > 27°C) may suffer from the heat (physiological strain, thermal discomfort, increased probability of heat illness), making them partially or fully inoperative. Performing physical activities during heat acclimatization is known to improve this process (i.e., improve measures of acclimatization for the same duration of acclimation). However, it is unknown whether such training would be efficient in an operative context, characterized by a high volume of work-related physical activity. Thirty French soldiers (Training group, T) performed a short (5 days), progressive, moderate (from three to five 8-min running sets at 50% of the speed at VO2max for 32-56 min) aerobic training program upon arriving at their base in United Arab Emirates (~40°C and 12% RH). A control group (30 soldiers; No Training, NT) continued to perform their usual outdoor military activities (~6 h.d-1). A field heat stress test (HST; three 8-min running sets at 50% of the speed at VO2max) was performed, before and after the heat acclimatization period, to assess physiological and subjective changes. Rectal temperature, heart rate (HR), thermal discomfort at rest and at the end of exercise, rates of perceived exertion (RPE), and sweat loss and osmolality decreased following heat acclimatization in both groups. However, the decreases in the T group were larger than those in the NT group for HR at the end of exercise (-20 ± 13 vs. -13 ± 6 bpm, respectively, p = 0.044), thermal discomfort at rest (-2.6 ± 2.7 vs. -1.4 ± 2.1 cm, respectively, p = 0.013) and at the end of exercise (-2.6 ± 1.9 vs. -1.6 ± 1.7 cm, respectively, p = 0.037) and RPE (-2.3 ± 1.8 vs. -1.3 ± 1.7, respectively, p = 0.035). Thus, we showed that adding short (<60 min), daily, moderate-intensity training sessions during a professional mission in a hot and dry environment accelerated several heat-acclimatization-induced changes at rest and during exercise in only 5 days.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA