RESUMO
Fluorine does not belong to the pool of chemical elements that nature uses to build organic matter. However, chemists have exploited the unique properties of fluorine and produced countless fluoro-organic compounds without which our everyday lives would be unimaginable. The incorporation of fluorine into amino acids established a completely new class of amino acids and their properties, and those of the biopolymers constructed from them are extremely interesting. Increasing interest in this class of amino acids caused the demand for robust and stereoselective synthetic protocols that enable straightforward access to these building blocks. Herein, we present a comprehensive account of the literature in this field going back to 1995. We place special emphasis on a particular fluorination strategy. The four main sections describe fluorinated versions of alkyl, cyclic, aromatic amino acids, and also nickel-complexes to access them. We progress by one carbon unit increments. Special cases of amino acids for which there is no natural counterpart are described at the end of each section. Synthetic access to each of the amino acids is summarized in form of a table at the end of this article with the aim to make the information easily accessible to the reader.
RESUMO
Structural waters in the S1 binding pocket of ß-trypsin are critical for the stabilization of the complex of ß-trypsin with its inhibitor bovine pancreatic trypsin inhibitor (BPTI). The inhibitor strength of BPTI can be modulated by replacing the critical lysine residue at the P1 position by non-natural amino acids. We study BPTI variants in which the critical Lys15 in BPTI has been replaced by α-aminobutyric acid (Abu) and its fluorinated derivatives monofluoroethylglycine (MfeGly), difluoroethylglycine (DfeGly), and trifluoroethylglycine (TfeGly). We investigate the hypothesis that additional water molecules in the binding pocket can form specific noncovalent interactions with the fluorinated side chains and thereby act as an extension of the inhibitors. We report potentials of mean force (PMF) of the unbinding process for all four complexes and enzyme activity inhibition assays. Additionally, we report the protein crystal structure of the Lys15MfeGly-BPTI-ß-trypsin complex (pdb: 7PH1). Both experimental and computational data show a stepwise increase in inhibitor strength with increasing fluorination of the Abu side chain. The PMF additionally shows a minimum for the encounter complex and an intermediate state just before the bound state. In the bound state, the computational analysis of the structure and dynamics of the water molecules in the S1 pocket shows a highly dynamic network of water molecules that does not indicate a rigidification or stabilizing trend in regard to energetic properties that could explain the increase in inhibitor strength. The analysis of the energy and the entropy of the water molecules in the S1 binding pocket using grid inhomogeneous solvation theory confirms this result. Overall, fluorination systematically changes the binding affinity, but the effect cannot be explained by a persistent water network in the binding pocket. Other effects, such as the hydrophobicity of fluorinated amino acids and the stability of the encounter complex as well as the additional minimum in the potential of mean force in the bound state, likely influence the affinity more directly.
Assuntos
Aprotinina , Água , Tripsina , AminoácidosRESUMO
Substituting the P1 position in bovine pancreatic trypsin inhibitor (BPTI) is known to heavily influence its inhibitory activity towards serine proteases. Side-chain fluorinated aliphatic amino acids have been shown to alter numerous properties of peptides and proteins and thus are of interest in the context of BPTI. In our study, we systematically investigated the site-specific incorporation of non-canonical amino acids into BPTI by microwave-assisted solid-phase peptide synthesis (SPPS). Inhibitor activity of the variants was tested towards the serine protease α-chymotrypsin. We observed enhanced inhibition of two fluorinated BPTIs compared to wild type and hydrocarbon variants. To further investigate the complexes, we performed X-ray structure analysis. Our findings underline the power fluorine offers as a tool in protein engineering to beneficially alter the effects on phenomena as protein-protein interactions.
RESUMO
Several functionalized and non-functionalized perfluoroarenes were catalytically transformed into their para-hydrodefluorinated products by using catalytic amounts of titanocene difluoride and stoichiometric amounts diphenylsilane. Turnover numbers of up to 93 were observed. Solution density functional theory calculations at the M06-2X/TZ(PCM)//M06-2X/TZ(PCM) level of theory provided insight into the mechanism of TiIII -catalyzed aromatic hydrodefluorination. Two different substrate approaches, with a Ti-F interaction (pathwayâ A) and without a Ti-F interaction (pathwayâ B), are possible. Pathwayâ A leads to a σ-bond metathesis transition state, whereas pathwayâ B proceeds by means of a two-step mechanism through a syn-hydrometalation intermediate or through a Meisenheimer intermediate. Both pathways are competitive over a broad range of substrates.