RESUMO
More frequent and severe extreme weather events such as heatwaves are among the most serious challenges to society in coping with the changing climate. To evaluate the impacts of the heatwave on large-scale urban areas, a multi-scale weather forecasting system is designed by integrating different resolutions of the Canadian urbanized version of the Global Environmental Multiscale (GEM) Numerical Weather Prediction (NWP) model, cascading from 10 km to 2.5 km, and 250 m. The multi-scale model is implemented in Montreal, Canada, for modeling the 2018 heatwave. Simulation results are well-validated against measurement data, including Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery and ten weather stations in the city. The Universal Thermal Climate Index (UTCI) map was calculated to identify vulnerable regions in the city against the heatwave. Land-use types in hotspots and coldspots are analyzed to find dominant factors in the formation of hot and cold areas. It is found that natural landscapes such as vegetation, trees, and water bodies are the dominant features of most coldspots. On the other hand, roads, parking lots, less tree covers, and industrial activities are the common land use features in the hotspots. A weak correlation is found between heat-related death locations and the outdoor UTCI map, implying that the assessment of an outdoor heatwave may not address overheated buildings and communities. This paper shows the importance of built environments - their properties and occupants' socio-demographic factors in the study of heat-related mortalities in cities.
RESUMO
Urban areas have complex thermal distribution. We examined the association between extreme temperature and mortality in urban Ontario, using two temperature data sources: high-resolution and weather station data. We used distributed lag non-linear Poisson models to examine census division-specific temperature-mortality associations between May and September 2005-2012. We used random-effect multivariate meta-analysis to pool results, adjusted for air pollution and temporal trends, and presented risks at the 99th percentile compared to minimum mortality temperature. As additional analyses, we varied knots, examined associations using different temperature metrics (humidex and minimum temperature), and explored relationships using different referent values (most frequent temperature, 75th percentile of temperature distribution). Weather stations yielded lower temperatures across study months. U-shaped associations between temperature and mortality were observed using both high-resolution and weather station data. Temperature-mortality relationships were not statistically significant; however, weather stations yielded estimates with wider confidence intervals. Similar findings were noted in additional analyses. In urban environmental health studies, high-resolution temperature data is ideal where station observations do not fully capture population exposure or where the magnitude of exposure at a local level is important. If focused upon temperature-mortality associations using time series, either source produces similar temperature-mortality relationships.
Assuntos
Poluição do Ar/efeitos adversos , Coleta de Dados/métodos , Calor Extremo/efeitos adversos , Mortalidade , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Bases de Dados Factuais , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Ontário , Distribuição de Poisson , População Urbana , Adulto JovemRESUMO
Rapid urbanization combined with climate change necessitates new types of urban services that make best use of science and technology. The Integrated Urban Hydro-Meteorological, Climate and Environmental Services and systems are a new initiative from the World Meteorological Organization (WMO) that seeks to provide science-based integrated urban services supporting safe, healthy and resilient cities. Various cities have already started development and implementation of such Integrated Urban Services and successfully test and use them following specific requirements of local stakeholders. This paper demonstrates the novel concept and approach of Integrated Urban Hydro-Meteorological, Climate and Environmental Services (IUS) from a set of four case study cities: Hong Kong, Toronto, Mexico City and Paris, that use different IUS configurations with good existing practice. These cities represent a range of countries, climates and geophysical settings. The aggregate main joint similarities of the IUS in these cities and synergy of the cities' experience, achievements and research findings are presented, as well as identification of existing gaps in knowledge and further research needs. A list of potential criteria for identifying and classifying IUS demonstration cities is proposed. It will aid future, more detailed analysis of the IUS experience, and selection of additional demonstration cities.