RESUMO
RATIONALE: Toluene diisocyanate (TDI) is a highly reactive isocyanate commonly used as a mixture of 2,4- and 2,6- isomers in the production of flexible foams. Exposure to TDI occurs primarily through vapour inhalation in workplaces where TDI is produced or used, but dermal exposure is also possible during some tasks. To ensure workplace safety, accurate monitoring of TDI and toluene diamine (TDA) levels is required. Methods of quantifying field effectiveness of gloves in preventing dermal exposure have not been established. Therefore, there is a need to develop a new practical method for assessing glove effectiveness for TDI/TDA. METHOD: A new offline SPE UPLC-MS/MS method for the quantitation of TDA isomers from TDI-exposed gloves was developed. Gloves were dipped in a solution of 1% acetic acid leading to a full conversion to TDA. TDA-free amine compounds were derivatized with acetic anhydride to increase chromatographic retention and signal intensity. RESULTS: 2,4-Diaminotoluene-α, α, α-d3 (2,4-d3 -TDA) was selected as a surrogate standard to minimise the variability in sample preparation and instrumental sensitivity. The choice of UPLC-MS/MS operated in multiple reaction monitoring (MRM) mode allowed to reach much lower limits of detection (LOD). The LOD of the method was 6.86 and 2.83 ng/mL (0.03 and 0.01 µg) for 2,6-TDA and 2,4-TDA, respectively. The limit of quantitation (LOQ) was 22.85 and 9.42 ng/mL (0.11 and 0.05 µg) for 2,6-TDA and 2,4-TDA, respectively. CONCLUSION: A new UPLC-MS/MS analytical method has been developed to determine field effectiveness of gloves for preventing dermal exposure to TDI/TDA. The new technique overcomes some limitations for measuring putative dermal exposure to isocyanates and may be useful in exposure monitoring and future research on isocyanate health risks.
Assuntos
Tolueno 2,4-Di-Isocianato , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Cromatografia Gasosa-Espectrometria de Massas , Isocianatos/análise , Espectrometria de Massas em Tandem , Tolueno 2,4-Di-Isocianato/análiseRESUMO
4,4'-Methylenediphenyldiisocyanate (MDI), toluenediisocyanate (2,4-TDI and 2,6-TDI), and 1,6'-hexamethylenediisocyanate (HDI) are all commonly used in the production of polyurethane-containing materials in different application areas. Workers exposed occupationally to these compounds may develop sensitization with the potential to lead to asthma. Isocyanates are metabolized in vivo by conjugation to macromolecules and/or by acetylation prior to being eliminated in urine. The hydrolysis of urine samples releases free amine compounds from these metabolites as biomarkers of exposure, specific to each parent isocyanate: 4,4'-methylenedianiline (MDA), toluenediamine (2,4-TDA and 2,6-TDA), and hexamethylenediamine (HDA). To address the need for a validated method that could be used for the simultaneous determination of biomarkers of aliphatic and aromatic isocyanates to monitor occupational exposure based on recommended thresholds, we have developed an UPLC-MS/MS method for the quantitation of MDA, TDA isomers, and HDA following acid hydrolysis, solid-phase extraction, and derivatization of urine samples. Free amine compounds were derivatized with acetic anhydride to augment chromatographic retention and signal intensity. The method was developed considering the biological guidance value (BGV) of MDA at 10 µg L-1, and biological exposure indices (BEI) of TDA isomers and HDA at 5 µg g-1 and 15 µg g-1 creatinine, respectively. Limits of detection allowed monitoring down to 6% of BGV/BEI, with precision within 8%. The accuracy and reliability of the method were assessed using inter-laboratory reference samples and deemed acceptable based on three rounds of measurements. This novel method has therefore been proven as useful for occupational safety and health assessments. Graphical Abstract.
Assuntos
Cromatografia Líquida/métodos , Isocianatos/urina , Exposição Ocupacional , Espectrometria de Massas em Tandem/métodos , Biomarcadores/urina , Humanos , Isocianatos/química , Isocianatos/normas , Limite de Detecção , Padrões de ReferênciaRESUMO
Diisocyanates are occupational contaminants and known sensitizers causing irritation (skin and respiratory tract) as well as occupational asthma. Because of their physicochemical properties (semi-volatile and high reactivity) and low occupational limits, diisocyanate exposure evaluation is still a challenge nowadays for industrial hygienists and laboratories. The objective of this study was to compare the methylene diphenyl diisocyanate (MDI) concentrations measured by five methods using different collection or derivatization approaches in an oriented-strand board (OSB) factory. The methods used were: OSHA 47 (filter, 1-(2-pyridyl)piperazine) (OSHA), Asset EZ4-NCO (denuder and filter, dibutylamine) (Asset), Iso-Chek (double-filter, 9-(N-methylaminomethyl) anthracene and 1,2-methoxyphenylpiperazine), DAN (filter, 1,8-diaminonaphthalene), and CIP10 (centrifugation, 1,2-methoxyphenylpiperazine). Real-time monitoring of particle concentration and size distribution was performed to explain the potential bias between methods. The comparison study was performed over 3 consecutive days, generating at least 18 replicates for each of the 5 methods. The results of each methods were compared using linear mixed effect modeling. Compared to Asset, which yielded the highest concentrations overall, the OSHA method provided the smallest bias with -18% (95% CI [-61;24]) (not significant) for MDI monomer and the DAN method provided the smallest bias with -30 (95% CI [-70;9]) (not significant) for Total Reactive Isocyanate Group (TRIG). The CIP10 and Iso-Chek methods provided the largest biases for MDI monomer (-83% (95% CI [-115;-51]) and -78% (95% CI [-110;-46]), respectively) as well as for TRIG (-87% (95% CI [-120;-55]) and -75% (95% CI [-107;-44]), respectively). The underestimations of the CIP10 and Iso-Chek were explained by its inefficient sampling principle for fines particles and the use of a non-impregnated filter to collect aerosol MDI, respectively. This study confirms that impregnated filter, including denuding device such as the Asset EZ4-NCO sampler, collects the MDI-coated wood particles and MDI vapor with similar efficiency. It also demonstrates for the first time in this type of MDI emission a significant agreement for TRIG concentration between the DAN method in the impregnated filter configuration and an international standard one such as Asset.
Assuntos
Poluentes Ocupacionais do Ar/análise , Monitoramento Ambiental/métodos , Isocianatos/análise , Filtros de Ar , Materiais de Construção , Instalações Industriais e de Manufatura , Tamanho da Partícula , MadeiraRESUMO
Because of the semi-volatile nature of diisocyanates (being airborne in both physical vapor and particulate phases), their high reactivity and low occupational exposure limits, diisocyanate exposure evaluation has been challenging for industrial hygienists and laboratories. The objective of this study was to compare the toluene diisocyanate (2,4 and 2,6 isomers, TDI) concentration measured by five methods in a flexible polyurethane foam factory using different collection or derivatization approaches. The methods used were: OSHA 42 modified (filter, 1-(2-pyridyl)piperazine) (OSHA), Asset EZ4-NCO (denuder and filter, dibutylamine) (Asset), Iso-Chek (double-filter, 9-(N-methylaminomethyl) anthracene and 1,2-methoxyphenylpiperazine), DAN (filter, 1,8-diaminonaphthalene), and CIP10 (centrifugation, 1,2-methoxyphenylpiperazine). Particle real-time monitoring for concentration and size distribution was performed in parallel to improve the understanding of the potential bias between methods. The comparison study was performed over 3 days, providing 18 replicates for each of the 5 methods. Isocyanate concentrations collected for each sampling method were compared using linear mixed effect modeling. Compared to OSHA, which yielded the highest concentrations overall, the Asset and DAN methods provided the smallest biases (-29% (95% CI [-52;-6]) and -45% (95% CI [-67;-23]), respectively), while the CIP10 and Iso-Chek methods provided the largest biases (-82% (95% CI [-105;-66]) and -96% (95% CI [-118;-75]), respectively). The substantial bias of Iso-Chek and CIP10 seemed to be explained by the predominance of TDI in the form of sub-micron particles that were inadequately captured by these two methods due to their sampling principle, which are particle filtration without derivatizing agent and centrifugation respectively. Asset and DAN performance seemed to decrease as the sampling time increased. While DAN's bias could be related to a reagent deficiency on the filter, the disparities between OSHA and Asset, both considered as reference methods, highlight the fact that the mechanisms of collection, derivation and extraction do not seem to be completely controlled. Finally, an upward trend has been observed between concentrations of particles below 300 nm in size and concentration levels of TDI. It has also been observed that TDI levels increased with the TDI foam index produced at the facility.
Assuntos
Poluentes Ocupacionais do Ar/análise , Exposição Ocupacional/análise , Exposição Ocupacional/normas , Poliuretanos/efeitos adversos , Poliuretanos/normas , Tolueno 2,4-Di-Isocianato/efeitos adversos , Tolueno 2,4-Di-Isocianato/análise , United States Occupational Safety and Health Administration/normas , Adulto , Poluentes Ocupacionais do Ar/normas , Monitoramento Ambiental/métodos , Monitoramento Ambiental/normas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estados UnidosRESUMO
RATIONALE: 4,4'-Methylene diphenyl diisocyanate (MDI) is a highly reactive isocyanate used in the production of polyurethanes. Workers exposed to these products may develop sensitization to the diisocyanate compounds, leading to occupational asthma. Quantifying MDI levels is necessary to ensure workplace safety. MDI is metabolized by acetylation and/or conjugation to macromolecules for excretion into urine. All metabolites can be chemically hydrolyzed to form the free diamine 4,4'-methylenedianiline (MDA) as a urinary biomarker of MDI exposure. Current methods involve long sample preparation, or have been designed using costly automation. There is therefore a need to develop a new practical method for assessing exposure to MDI. METHODS: Urine samples were acidified and heated to form MDA, followed by neutralization and liquid-liquid extraction. Extracts were separated by reversed-phase chromatography on a HSS T3 column followed by analysis on a triple quadrupole mass spectrometer in multiple reaction monitoring (MRM) mode. RESULTS: 13 C15 N-MDA was selected as the internal standard (IS) of choice following an investigation of internal standard stability. The hydrolysis efficiency, forming free MDA from conjugated metabolites in vivo, was evaluated using 4,4'-methylenebis(acetanilide) spiked into urine and complete hydrolysis occurred after 1 h. A dynamic range of 5 to 500 nM was achieved, and was useful for monitoring MDI exposure considering the biological guidance value (BGV) of 10 µg/L (~50 nM) proposed by the German Research Foundation (DFG). The limit of detection (LOD) and limit of quantification (LOQ) of the method were 0.8 and 2.7 nM, respectively. The intra-day and inter-day precisions were 4.33% and 4.27%, respectively. Finally, the method was tested with inter-laboratory samples from the German External Quality Assessment Scheme (G-EQUAS) program and the results submitted were all within the allowable tolerance range. CONCLUSIONS: A practical and validated method for the analysis of small- to medium-sized batches of samples has been developed for the biological monitoring of MDI exposure in human urine.
Assuntos
Compostos de Anilina/urina , Cromatografia Líquida/métodos , Isocianatos , Exposição Ocupacional/análise , Espectrometria de Massas em Tandem/métodos , Calibragem , Cromatografia Líquida/normas , Humanos , Hidrólise , Limite de Detecção , Extração Líquido-Líquido , Espectrometria de Massas em Tandem/normasRESUMO
Isocyanates are reactive semivolatile contaminants that must be assessed in occupational environments, and specific evaluation methods are required to address the challenges related to isocyanate emission characteristics. Several standard methods exist, but significant differences remain regarding the diversity of industrial isocyanate emissions. This study presents a method to establish a baseline comparison of three sampling principles. A fine aerosol (mass median aerodynamic diameter of 250 nm) of pure methylene diphenyl diisocyanate (MDI) was produced (5-60 µg m-3) using a laboratory generation system (n = 31 generation experiments). Airborne MDI was measured with the following four methods, with an emphasis on the spatial distribution of the collected MDI within the sampler: (1) Swinnex cassette 13 mm, glass fibre filter (GFF), 9-(N-methylaminomethyl) anthracene (MAMA-Swin); (2) closed-face cassette (CFC) 37 mm, GFF (end filter and inner walls), MAMA-37; (3) impinger and backup GGF, 1,2-methoxyphenylpiperazine (MP) (ISO 16702/MDHS 25); and (4) denuder and GFF (Asset EZ4-NCO), dibutylamine (DBA) (ISO 17334-1). Bland and Altman analyses determined that there were no significant bias between the methods although Asset was not in agreement with MAMA-Swin (95% confidence interval above the ±20% criteria). Significant correlations (P < 0.05) were observed between airborne MDI concentration levels and their distribution within the Asset (denuder vs. end filter) and impinger (collecting solution vs. backup filter) subsections. The presence of impregnated inner walls in the CFC did not increase collection efficiency for the generated MDI aerosol. Non-uniform MAMA impregnation on GFF was demonstrated, whereas the collected MDI was evenly distributed in the air samples. These results provided the basis of comparison for other studies involving more complex isocyanate emissions.
Assuntos
Poluentes Ocupacionais do Ar , Exposição Ocupacional , Poluentes Ocupacionais do Ar/análise , Exposição Ocupacional/análise , Monitoramento Ambiental/métodos , Isocianatos/análise , Aerossóis/análiseRESUMO
Hexahydro-3-alkyl-3H-oxazolo[3,4-a]pyridines 4-15 for the quantitative analysis of various aldehydes were obtained in good yield via the condensation reaction of 2-hydroxymethylpiperidine (2-HMP) with aldehydes under mild conditions. When acrolein was used, the bicyclic 17 was obtained. This novel compound has suitable physical characteristics for an analytical standard. The hexahydro-3-vinyl-3H-oxazolo[3,4-a]pyridine 16 can be obtained at higher temperatures using an excess of acrolein (3 equiv). Following the same procedure as for 16, but with an excess of 2-HMP (2 equiv), a diastereomeric mixture of 18/19, which are both bisadducts of 2-HMP with acrolein, was obtained. The latter mixture can be easily converted into pure 18. Mechanistically, a thorough 1H-NMR study did not show any evidence that the condensation reaction proceeded via an enamine. The reaction probably proceeded through an elusive hemiaminal and fleeting iminium ion, which underwent subsequent cyclization to give hexahydro-3-alkyl-3H-oxazolo[3,4-a]pyridines 4-16. The reaction pathways for the preparation of 4-18 are described.
RESUMO
Reactive semivolatile contaminants, such as isocyanates, can be particularly difficult to assess in occupational environments. While standard methods exist for isocyanates, there are still significant differences between the results they provide for various occupational environments or processes. This study presents the validation of a laboratory system for the generation of controlled atmospheres of isocyanates. A system consisting of different modules generated airborne methylene diphenyl diisocyanate (MDI) by nebulizing a solution into mixing and exposure chambers with control of flow rate, temperature, and relative humidity. Sampling was performed through an eight-port flow splitter that allowed only very slight within-test variability. MDI was measured using the Asset EZ4-NCO® and a modified version of the Iso-Chek® sampling system. MDI specific particle-size distribution was measured by a Marple Sierra cascade. Aerosol real-time monitoring was performed using a condensation particle counter, an electrical low-pressure impactor (ELPI+), and an aerosol optical spectrometer, providing additional information on system stability and particle-size distribution of the generated aerosol. The system was able to generate MDI concentration levels ranging from 4 to 233 µg m-3, with a steady-state level reached within 5 minutes, and with well-documented intra-test and inter-test variability (RSD of 4% and 15%, respectively). Accuracy and representativeness of MDI data were confirmed by the agreement between MAMA and Asset EZ4-NCO (used as reference), with a mean bias of 3%. Using the Asset EZ4-NCO capability, the vapor-particle partitioning of MDI was evaluated to be 8% and 92%, respectively, at a concentration ranging from 20 to 25 µg m-3. The system may therefore be used for exhaustive method intercomparison studies and could also be adapted to generate other emission types of semivolatile compounds.
Assuntos
Poluentes Ocupacionais do Ar , Exposição Ocupacional , Poluentes Ocupacionais do Ar/análise , Monitoramento Ambiental , Isocianatos/análise , Exposição Ocupacional/análiseRESUMO
The US Environmental protection agency (EPA) has published guidance that includes test procedures for evaluating indoor exposure to chemicals from products. One of the test procedures represents the migration test for evaluating potential dermal exposure from home furniture. Such an evaluation involves the chemical measurement of the sweat which is currently unavailable in the literature. The objective of this project was to develop and validate an analytical method for quantification of migration of 4,4'-methylenediphenyl diisocyanate (MDI), 2,6-toluene diisocyanate (2,6-TDI) and 2,4-toluene diisocyanate (2,4-TDI) from a polyurethane (PU) flexible foam to artificial sweat that meets the recommendations of the EPA test protocol. Following the EPA protocol, six synthetic sweat solutions were prepared and used in evaluation of isocyanate recovery performance. The migration tests were conducted using five foam types that were chosen and supplied by PU foam manufacturers to represent the types most commonly found in commercial products, and with formulations anticipated to have the highest potential residual TDI or MDI. Migration tests were conducted using glass fiber filters (GFF) coated with 1-(2-methoxyphenyl)piperazine (1,2-MP) and analyzed using HPLC equipped with a UV detector for quantification and a MS detector to qualify peaks. The detection limits of the method were 0.002 µg/mL for 2,6-TDI, 0.011 µg/mL for 2,4-TDI, and 0.003 µg/mL for MDI. Quantification limits were 0.006 µg/mL, 0.037 µg/mL, and 0.010 µg/mL, respectively. The recovery tests on a Teflon surface for 5 of the 6 EPA-recommended synthetic sweat solutions indicate the recovery percentage was approximately 80% for diisocyanates. Recovery for the sixth sweat solution was low, approximately 30%. TDI and MDI migration was not observed when testing was conducted on foam samples.
Assuntos
Isocianatos/química , Pintura/efeitos adversos , Poliuretanos/química , Suor/química , Tolueno 2,4-Di-Isocianato/química , Poluentes Ocupacionais do Ar/efeitos adversos , Poluentes Ocupacionais do Ar/química , Cromatografia Líquida de Alta Pressão , Exposição Ambiental/efeitos adversos , Monitoramento Ambiental , Humanos , Isocianatos/efeitos adversos , Movimento , Propriedades de Superfície , Espectrometria de Massas em Tandem , Tolueno 2,4-Di-Isocianato/efeitos adversosRESUMO
In continuation with our previous study using fluorescein-isothiocyanate (FITC)-Lys-Arg-Phe-Lys (KRFK) peptide, the aim of this work was to study the interaction of the unlabelled KRFK with calcium alginate gel microspheres coated with a serum albumin (HSA)-alginate membrane prepared using a transacylation method. Coated microspheres were prepared with two main sizes and two gel strengths. Control microspheres made of cross-linked alginate-HSA without calcium alginate gel were also prepared. A series of loading and release assays conducted with methylene blue showed the requirement of inner gel for binding the cationic molecule. Release experiments were performed in different media using unlabelled KRFK and coated microspheres. A plateau was reached within 1h, in contrast with the slow release of the FITC-peptide observed in our previous work. This discrepancy was attributed to modified properties of the labelled peptide. Adsorption assays of KRFK on coated microspheres were performed in the presence of growing concentrations of NaCl or imidazole. The ions were able to displace the peptide from the particles, which demonstrated ionic interactions, probably involving carboxylate groups of alginate. Adsorption isotherms showed that gel strength influenced affinity (4x10(5) L/mol or 8x10(5) L/mol for gelation with 5% or 20% CaCl(2), respectively). Binding site number doubled (from 2.6x10(-7) mol/mg to more than 5x10(-7) mol/mg) when microsphere size decreased from 450 microm to 100 microm. Binding sites were assumed to be located in the gel underneath the membrane.
Assuntos
Alginatos/química , Fluoresceína-5-Isotiocianato/química , Oligopeptídeos/química , Albumina Sérica/química , Adsorção , Sítios de Ligação , Reagentes de Ligações Cruzadas , Preparações de Ação Retardada , Corantes Fluorescentes/química , Géis , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Humanos , Imidazóis/química , Azul de Metileno , Microesferas , Tamanho da Partícula , Cloreto de Sódio/químicaRESUMO
Baló's concentric sclerosis (BCS) lesions display specific metabolite changes detected by magnetic resonance spectroscopy (MRS). We report on two cases of BCS lesions examined by MRS; the first case was evaluated 36 days after the onset of symptoms, whereas the second case was evaluated 9 days after the onset of symptoms. MRS data were obtained from single voxels located in the lesion and in the contralateral region. Relative to the creatine/phosphocreatine peak, BCS lesions displayed decreases of N-acetyl aspartate and increases of choline, myo-inositol (mI), glutamine/glutamate (Glx), lactate and lipid+macromolecule signals, in agreement with previous reports. In addition, previously unreported decreases of mI (-19% to -29%) and increases of Glx (+55% to +198%) were measured; these could be useful in characterizing BCS lesions.
Assuntos
Esclerose Cerebral Difusa de Schilder/diagnóstico , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Adulto , Diagnóstico Diferencial , Feminino , Humanos , Pessoa de Meia-IdadeRESUMO
Chronic exposure to excess glucocorticoids results in cognitive and psychological impairment. A few studies have indicated that cerebral atrophy can be found in patients with Cushing's syndrome (CS), but its evolution after cure has not been studied extensively. We report the presence of apparent cerebral atrophy in CS and its reversibility after the correction of hypercortisolism. Thirty-eight patients with CS, including 21 with Cushing's disease and 17 with adrenal CS were studied. The control groups consisted of 18 patients with other non-ACTH-secreting sellar tumors and 20 normal controls. Twenty-two patients with CS were reevaluated after cure. Subjective loss of brain volume was present in 86% of patients with Cushing's disease and 100% of patients with adrenal CS. The values for third ventricle diameter, bicaudate diameter, and subjective evaluation were significantly increased in CS groups in comparison with the control group (P < or = 0.001). Imaging reevaluated at 39.7 +/- 34.1 months after achieving eucortisolism showed an improvement of the third ventricle diameter (P = 0.001), bicaudate diameter (P < 0.0005), and subjective evaluation (P = 0.05). We conclude that brain volume loss is highly prevalent in CS and is at least partially reversible following correction of hypercortisolism.
Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Síndrome de Cushing/sangue , Síndrome de Cushing/diagnóstico , Hidrocortisona/sangue , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Estudos Retrospectivos , Tomografia Computadorizada por Raios XRESUMO
BACKGROUND: Infantile and juvenile forms of Alexander disease are well characterized and are caused by de novo mutations in the glial fibrillary acid protein (GFAP) gene. In contrast, the adult form of the disease has been rarely described, and the etiology of this variant remains unknown. OBJECTIVE: To characterize the clinical phenotype and identify the gene causing an autosomal dominant form of adult Alexander disease. METHODS: We identified a large kindred segregating clinical features compatible with adult Alexander disease in an autosomal dominant fashion. A neurological examination was performed on all affected members of this family. Most of these patients also underwent magnetic resonance imaging of the brain and a polysomnographic study. The diagnosis was confirmed pathologically in 2 individuals. We screened all coding regions of the GFAP gene in affected individuals by means of direct sequencing and single-stranded conformational polymorphisms analysis. RESULTS: We found a novel D78E mutation in GFAP in all affected individuals. This mutation was not detected in more than 100 control subjects. Clinical and radiological features of affected individuals were clearly different from those of patients with the infantile and juvenile forms of the disease. The most consistent finding was the presence of bulbar signs. In addition, sleep disturbance (mainly sleep apnea), symptoms of dysautonomia, and dysmorphism were found in all affected individuals. In younger patients, magnetic resonance imaging showed T2 signal abnormalities in the medulla compatible with an area of demyelination. In contrast, in older patients, we found marked atrophy of the medulla without signal abnormalities. None of the affected individuals exhibit signs of demyelination of the cerebral white matter. CONCLUSIONS: The present study is the first demonstration of a mutation in GFAP that causes an autosomal dominant form of Alexander disease and establishes the existence of the adult variant. Clinical evaluation in individuals carrying mutation in the GFAP gene allowed a better definition of this heterogeneous clinical syndrome and will help increase its recognition in neurological practice.
Assuntos
Doença de Alexander/genética , Expressão Gênica/genética , Proteína Glial Fibrilar Ácida/genética , Mutação Puntual/genética , Adulto , Doença de Alexander/diagnóstico , Doença de Alexander/metabolismo , Técnicas de Cultura , Análise Mutacional de DNA , DNA Complementar/genética , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Bulbo/patologia , Pessoa de Meia-Idade , Proteínas de Neurofilamentos/genética , Proteínas de Neurofilamentos/metabolismo , Linhagem , FenótipoRESUMO
In this project, a sampling device and an analytical method have been developed to simultaneously analyse the most frequently found low molecular weight amines, including aliphatic, aromatic and alcohol amines. These amines are diethanolamine, ethanolamine, methylamine, isopropylamine, morpholine, dimethylamine, and aniline. A sampling device was developed using a 37 mm cassette with glass fibre filters impregnated with sulfuric acid. Immediately after sampling, the filter was transferred to vials containing a solution of dansyl chloride. Dansyl chloride was used for derivatisation because it forms aromatic sulfonamides that are fluorescent and easy to protonate for MS detection. The effect of using an internal standard made with the dansylated derivative of 1-(2-methoxyphenyl)piperazine (MOPIP) on the uncertainty and efficiency of the method was also evaluated. This internal standard was spiked directly onto filters. The coupling of HPLC/ESI-MS was used for the simultaneous analysis of all the derivatives. This method showed detection limits of about 0.03 microg mL(-1) to 0.3 microg mL(-1) of amine with an average expanded uncertainty of 3% to 6% depending on the amine. The methodology recoveries are close to 100% for all the amines, and the overall estimated expanded uncertainties vary between 10% and 13% depending on the amine. This new strategy will be useful in evaluating workplace air since a unique sampling system will be used, independent of the amine to be quantified.
Assuntos
Poluentes Ocupacionais do Ar/análise , Aminas/análise , Monitoramento Ambiental/métodos , Exposição Ocupacional/análise , Compostos de Anilina/análise , Cromatografia Líquida de Alta Pressão/métodos , Dimetilaminas/análise , Monitoramento Ambiental/instrumentação , Etanolamina/análise , Etanolaminas/análise , Metilaminas/análise , Peso Molecular , Morfolinas/análise , Propilaminas/análise , Espectrometria de Massas por Ionização por Electrospray/métodosRESUMO
The primary objectives of this study were (a) to measure potential exposures of applicators and assistants to airborne methylene diphenyl diisocyanate (MDI), (b) to measure airborne concentrations of MDI at various distances from the spray foam application, and (c) to measure airborne MDI concentrations as a function of time elapsed since application. Other study objectives were, (a) to compare the results from filter and impinger samples; (b) to determine the particle size distribution in the spray foam aerosol; (c) to determine potential exposures to dichlorofluoroethane; and (d) to measure any off-gassing of MDI after the foam had fully cured. This study was conducted during application of spray polyurethane foam inside five single-family homes under construction in the United States and Canada. Spray foam applicators and assistants may be exposed to airborne MDI concentrations above the OSHA permissible exposure limit. At these concentrations, OSHA recommends appropriate respiratory protection during spray foam application to prevent airborne MDI exposures above established limits and to protect against exposure to dichlorofluoroethane (HCFC-141b). Airborne MDI concentrations decrease rapidly after foam application ceases. The highest airborne concentrations measured after 15 min and 45 min were 0.019 mg/m3 and 0.003 mg/m3, respectively. After 45 min, airborne concentrations were below the limit of quantitation (LOQ) of 0.036-microg per sample. For samples taken 24 hours after completion of foaming, results were also below the LOQ. Approximately two-thirds of the total mass of the airborne particles in the spray foam aerosol was greater than 3.5 microns in diameter. Airborne MDI concentrations determined by filter sampling methods were 6% to 40% lower than those determined by impinger methods.
Assuntos
Poluentes Ocupacionais do Ar/análise , Clorofluorcarbonetos/análise , Isocianatos/análise , Exposição Ocupacional/análise , Poliuretanos , Poluentes Ocupacionais do Ar/normas , Canadá , Clorofluorcarbonetos/normas , Etano Clorofluorcarbonos , Arquitetura de Instituições de Saúde , Habitação , Humanos , Isocianatos/normas , Tamanho da Partícula , Níveis Máximos Permitidos , Estados UnidosRESUMO
Polyurethanes are widely used in car paint formulations. During thermal degradation, such polymeric systems can generate powerful asthmatic sensitizing agents named isocyanates. In body repair shops, the thermal degradation of car paint can occur during abrasive processes that generate enough heat to involve release of isocyanates in air. An environmental monitoring study was performed in two body repair training schools and in a body repair shop to evaluate the workers' exposure to isocyanates during cutting, grinding and orbital sanding operations. For sampling, cassettes containing two 1-(2-methoxyphenyl)piperazine (MOPIP)-coated glass fiber filters (MFs) ( approximately 5 mg of MOPIP per filter) and bubblers containing 15 ml of MOPIP solution in toluene (1.0 mg ml(-1)) backed at the outlet with cassettes containing two MFs were used. Tandem mass spectrometry was used to analyze the MOPIP derivatives of isocyanic acid (HNCO), all the linear aliphatic isocyanates ranging from methyl isocyanate (Me-i) to hexyl isocyanate, all the alkenyl isocyanates ranging from propylene isocyanate to hexylene isocyanate, 1,6-hexamethylene diisocyanate (HDI), trans- and cis-isophorone diisocyanate (IPDI), 2,4- and 2,6-toluene diisocyanate (TDI), 2,4'-; 2,2'- and 4,4'-methylenediphenyl diisocyanate (MDI), phenyl isocyanate (Ph-i) and p-toluene isocyanate (p-Tol-i). The instrumental detection limits (LOD) were in the 0.13-0.75 microg of NCO per m(3) range for 15 l air samples converted into 3 ml liquid samples. The isocyanate concentrations detected in the workers' breathing zone were in the 1.07-9.80 microg of NCO per m(3) range for cutting, 0.63-3.62 microg of NCO per m(3) range for grinding and 0-1.29 microg of NCO per m(3) range for sanding. However, a rapid decrease of the isocyanate concentration was observed while moving away from the emission source. Among the isocyanates detected the most abundant were the monomers (MDI, HDI, TDI and IPDI) and Me-i.
Assuntos
Poluentes Ocupacionais do Ar/análise , Automóveis , Isocianatos/análise , Exposição Ocupacional/análise , Pintura/análise , Monitoramento Ambiental/métodos , Temperatura Alta , HumanosRESUMO
This study was conducted to measure the impact of PACS on dictation turnaround time and productivity. The radiology information system (RIS) database was interrogated to calculate the time interval between image production and dictation for every exam performed during three 90-day periods (the 3 months preceding PACS implementation, the 3 months immediately following PACS deployment, and a 3-month period 1 year after PACS implementation). Data were obtained for three exam types: chest radiographs, abdominal CT, and spine MRI. The mean dictation turnaround times obtained during the different pre- and post-PACS periods were compared using analysis of variance (ANOVA). Productivity was also determined for each period and for each exam type, and was expressed as the number of studies interpreted per full-time equivalent (FTE) radiologist. In the immediate post-PACS period, dictation turnaround time decreased 20% (p < 0.001) for radiography, but increased 13% (ns) for CT and 28% (p < 0.001) for MRI. One year after PACS was implemented, dictation turnaround time decreased 45% (p < 0.001) for radiography and 36% (p < 0.001) for MRI. For CT, 1 year post-PACS, turnaround times returned to pre-PACS levels. Productivity in the immediate post-PACS period increased 3% and 38% for radiography and CT, respectively, whereas a 6% decrease was observed for MRI. One year after implementation, productivity increased 27%, 98%, and 19% in radiography, CT, and MRI, respectively. PACS benefits, namely, shortened dictation turnaround time and increased productivity, are evident 1 year after PACS implementation. In the immediate post-PACS period, results vary with the different imaging modalities.
Assuntos
Eficiência Organizacional , Sistemas Computadorizados de Registros Médicos , Serviço Hospitalar de Radiologia/organização & administração , Sistemas de Informação em Radiologia , Análise e Desempenho de Tarefas , Humanos , Imageamento por Ressonância Magnética , Radiografia Abdominal , Radiografia Torácica , Coluna Vertebral/patologia , Tomografia Computadorizada por Raios XRESUMO
Occupational exposures to isocyanates can lead to occupational asthma. Once sensitized, some workers could react to isocyanate monomers at concentrations below 1% of the Permissible Exposure Limit of 5 ppb in air. Currently available methods are not sufficiently sensitive to adequately evaluate isocyanates present at these levels in workplace air. This article describes a novel method for isocyanate determination allowing the ultratrace quantification in workplace air of hexamethylene diisocyanate, 2,4-toluene diisocyanate and 2,6-toluene diisocyanate monomers. Sampling is performed during a complete workshift at a flow rate of 1 L min(-1) with a cassette containing a 1-(2-methoxyphenyl)piperazine-impregnated 25 mm filter. Analysis is performed using liquid chromatography hyphenated with coordination ionspray tandem mass spectrometry. The analytical method's linearity was measured for a concentration range varying from the limit of detection of 0.04-0.13 ng mL(-1), depending on the monomer, up to approximately 32 ng mL(-1) for every isocyanate monomer, all with correlation coefficients (R(2)) greater than 0.999. The analytical method's lower limit of quantification combined with an adapted sampling strategy allow the quantification of isocyanate monomers down to 0.04 ppt for an 8 h work shift when a lithium adduct is used, which is more than 300 times lower than the most sensitive method currently available. This novel method can be used to confirm the very low level of isocyanate monomers for the safe reassignment of sensitized workers and it is also useful for charting the isocyanate dispersion tail in workplace environments.
Assuntos
Poluentes Ocupacionais do Ar/análise , Cianatos/análise , Tolueno 2,4-Di-Isocianato/análise , Monitoramento Ambiental/métodos , Humanos , Isocianatos , Isomerismo , Espectrometria de Massas/métodos , Sensibilidade e Especificidade , Manejo de EspécimesRESUMO
The stabilization of the isocyanate (NCO) groups during workplace sampling is necessary for their subsequent laboratory analysis. Most derivatization reagents are secondary amines. By carrying out a test in which two secondary amines are added to an isocyanate, the relative rates of these reactions can be evaluated. This evaluation is known for a monoisocyanate, phenylisocyanate (PHI), but is being developed for diisocyanates. This study deals with the relative reactivity (RR) of four diisocyanates: hexamethylene 1,6-diisocyanate (HDI), 4,4'-methylenebis(phenyl isocyanate) (MDI), and the ortho and para isomers of toluene diisocyanate (TDI) in addition to PHI, with four secondary amines: 1-(2-methoxyphenyl)piperazine (MOPIP), 9-(N-methylaminomethyl)anthracene (MAMA), 1-(9-anthracenylmethyl)piperazine (MAP), and dibutylamine (DBA). These competitive derivatization reactions are studied in three reaction solvents, namely acetonitrile, toluene, and acetonitrile doped with water (1% v/v). The results show that the order of reactivity, which doesn't change with the isocyanate as well as with the solvent used, is the following: DBA > MAP > MOPIP > MAMA. The relative difference in reactivity is a function of both the isocyanate and the solvent used. Hindered aromatic diisocyanates (TDI and MDI) show a greater difference in reactivity with the derivatization agents. These differences in reactivity are also modified by the solvent used. For example, larger differences are observed in acetonitrile than in toluene, but the introduction of water to acetonitrile, which does not affect the reaction yield, makes these differences smaller.
RESUMO
Isocyanates can cause occupational asthma. By using available HPLC-UVF methods, isocyanates can be quantified only at levels above 1% of the Permissible Exposure Limits (PEL). Once sensitized, workers can react to concentrations below these limits of detection (LOD) making these methods insufficiently sensitive to adequately evaluate trace amounts of isocyanates present in air or in materials at safe levels for sensitized workers. This article describes a novel method for isocyanate analysis allowing the quantification of 2,4TDI and 2,6TDI monomers at very low concentrations using HPLC-CIS-MS-MS. The method's sensitivity increases with a decrease in the alkali radius. The LOD is 0.039 ng mL(-1) for 2,4TDI and 0.100 ng mL(-1) for 2,6TDI in solution when lithium is the alkali adduct, which is 20 times more sensitive than HPLC-UVF method. This new method allows determination in foam at levels of 0.078 ng g(-1) for 2,4TDI and 0.200 ng g(-1) for 2,6TDI respectively, for a 0.5 g foam sample. This is more than 100 times more sensitive than other methods for determining free monomers in solid materials. Analytical reproducibility and precision are better than 92% and 93% for both diisocyanate monomers. The use of HPLC-UVF conventional method failed to detect unreacted isocyanates in foam samples, but TDI monomers were quantified by HPLC-CIS-MS-MS.