Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Genes Dev ; 32(23-24): 1576-1590, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30478248

RESUMO

Saccharomyces cerevisiae target of rapamycin (TOR) complex 2 (TORC2) is an essential regulator of plasma membrane lipid and protein homeostasis. How TORC2 activity is modulated in response to changes in the status of the cell envelope is unclear. Here we document that TORC2 subunit Avo2 is a direct target of Slt2, the mitogen-activated protein kinase (MAPK) of the cell wall integrity pathway. Activation of Slt2 by overexpression of a constitutively active allele of an upstream Slt2 activator (Pkc1) or by auxin-induced degradation of a negative Slt2 regulator (Sln1) caused hyperphosphorylation of Avo2 at its MAPK phosphoacceptor sites in a Slt2-dependent manner and diminished TORC2-mediated phosphorylation of its major downstream effector, protein kinase Ypk1. Deletion of Avo2 or expression of a phosphomimetic Avo2 allele rendered cells sensitive to two stresses (myriocin treatment and elevated exogenous acetic acid) that the cell requires Ypk1 activation by TORC2 to survive. Thus, Avo2 is necessary for optimal TORC2 activity, and Slt2-mediated phosphorylation of Avo2 down-regulates TORC2 signaling. Compared with wild-type Avo2, phosphomimetic Avo2 shows significant displacement from the plasma membrane, suggesting that Slt2 inhibits TORC2 by promoting Avo2 dissociation. Our findings are the first demonstration that TORC2 function is regulated by MAPK-mediated phosphorylation.


Assuntos
Regulação para Baixo , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/genética , Estresse Fisiológico/genética , Ácido Acético/farmacologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Regulação para Baixo/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Ácidos Graxos Monoinsaturados/farmacologia , Deleção de Genes , Quinase 3 da Glicogênio Sintase/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Fosforilação , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais/efeitos dos fármacos
2.
J Proteome Res ; 21(9): 2124-2136, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-35977718

RESUMO

Medulloblastoma (MB) is the most common malignant pediatric brain tumor. MB is classified into four primary molecular subgroups: wingless (WNT), sonic hedgehog (SHH), Group 3 (G3), and Group 4 (G4), and further genomic and proteomic subtypes have been reported. Subgroup heterogeneity and few actionable mutations have hindered the development of targeted therapies, especially for G3 MB, which has a particularly poor prognosis. To identify novel therapeutic targets for MB, we performed mass spectrometry-based deep expression proteomics and phosphoproteomics in 20 orthotopic patient-derived xenograft (PDX) models of MB comprising SHH, G3, and G4 subgroups. We found that the proteomic profiles of MB PDX tumors are closely aligned with those of primary human MB tumors illustrating the utility of PDX models. SHH PDXs were enriched for NFκB and p38 MAPK signaling, while G3 PDXs were characterized by MYC activity. Additionally, we found a significant association between actinomycin D sensitivity and increased abundance of MYC and MYC target genes. Our results highlight several candidate pathways that may serve as targets for new MB therapies. Mass spectrometry data are available via ProteomeXchange with identifier PXD035070.


Assuntos
Neoplasias Encefálicas , Neoplasias Cerebelares , Meduloblastoma , Animais , Neoplasias Encefálicas/genética , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/metabolismo , Neoplasias Cerebelares/patologia , Criança , Modelos Animais de Doenças , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/uso terapêutico , Xenoenxertos , Humanos , Meduloblastoma/genética , Meduloblastoma/metabolismo , Meduloblastoma/patologia , Proteômica
3.
Mol Biol Cell ; 30(12): 1555-1574, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30969890

RESUMO

Eukaryotic cell survival requires maintenance of plasma membrane (PM) homeostasis in response to environmental insults and changes in lipid metabolism. In yeast, a key regulator of PM homeostasis is target of rapamycin (TOR) complex 2 (TORC2), a multiprotein complex containing the evolutionarily conserved TOR protein kinase isoform Tor2. PM localization is essential for TORC2 function. One core TORC2 subunit (Avo1) and two TORC2--associated regulators (Slm1 and Slm2) contain pleckstrin homology (PH) domains that exhibit specificity for binding phosphatidylinositol-4,5-bisphosphate (PtdIns4,5P2). To investigate the roles of PtdIns4,5P2 and constituent subunits of TORC2, we used auxin-inducible degradation to systematically eliminate these factors and then examined localization, association, and function of the remaining TORC2 components. We found that PtdIns4,5P2 depletion significantly reduced TORC2 activity, yet did not prevent PM localization or disassembly of TORC2. Moreover, truncated Avo1 (lacking its C-terminal PH domain) was still recruited to the PM and supported growth. Even when all three PH-containing proteins were absent, the remaining TORC2 subunits were PM-bound. Revealingly, Avo3 localized to the PM independent of both Avo1 and Tor2, whereas both Tor2 and Avo1 required Avo3 for their PM anchoring. Our findings provide new mechanistic information about TORC2 and pinpoint Avo3 as pivotal for TORC2 PM localization and assembly in vivo.


Assuntos
Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Subunidades Proteicas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas do Domínio Armadillo/química , Proteínas do Domínio Armadillo/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Domínios Proteicos , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Biomolecules ; 7(3)2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28872598

RESUMO

To grow, eukaryotic cells must expand by inserting glycerolipids, sphingolipids, sterols, and proteins into their plasma membrane, and maintain the proper levels and bilayer distribution. A fungal cell must coordinate growth with enlargement of its cell wall. In Saccharomyces cerevisiae, a plasma membrane-localized protein kinase complex, Target of Rapamicin (TOR) complex-2 (TORC2) (mammalian ortholog is mTORC2), serves as a sensor and masterregulator of these plasma membrane- and cell wall-associated events by directly phosphorylating and thereby stimulating the activity of two types of effector protein kinases: Ypk1 (mammalian ortholog is SGK1), along with a paralog (Ypk2); and, Pkc1 (mammalian ortholog is PKN2/PRK2). Ypk1 is a central regulator of pathways and processes required for plasma membrane lipid and protein homeostasis, and requires phosphorylation on its T-loop by eisosome-associated protein kinase Pkh1 (mammalian ortholog is PDK1) and a paralog (Pkh2). For cell survival under various stresses, Ypk1 function requires TORC2-mediated phosphorylation at multiple sites near its C terminus. Pkc1 controls diverse processes, especially cell wall synthesis and integrity. Pkc1 is also regulated by Pkh1- and TORC2-dependent phosphorylation, but, in addition, by interaction with Rho1-GTP and lipids phosphatidylserine (PtdSer) and diacylglycerol (DAG). We also describe here what is currently known about the downstream substrates modulated by Ypk1-mediated and Pkc1-mediated phosphorylation.


Assuntos
Redes Reguladoras de Genes , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Membrana Celular/metabolismo , Parede Celular/metabolismo , Regulação Fúngica da Expressão Gênica , Quinase 3 da Glicogênio Sintase/química , Quinase 3 da Glicogênio Sintase/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/química , Fosforilação , Ligação Proteica , Proteína Quinase C/metabolismo , Proteínas Quinases/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Transdução de Sinais
5.
Genetics ; 207(1): 179-195, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28739659

RESUMO

Yeast (Saccharomyces cerevisiae) target of rapamycin (TOR) complex 2 (TORC2) is a multi-subunit plasma membrane-associated protein kinase and vital growth regulator. Its essential functions are exerted via phosphorylation and stimulation of downstream protein kinase Ypk1 (and its paralog Ypk2). Ypk1 phosphorylates multiple substrates to regulate plasma membrane lipid and protein composition. Ypk1 function requires phosphorylation of Thr504 in its activation loop by eisosome-associated Pkh1 (and its paralog Pkh2). For cell survival under certain stresses, however, Ypk1 activity requires further stimulation by TORC2-mediated phosphorylation at C-terminal sites, dubbed the "turn" (Ser644) and "hydrophobic" (Thr662) motifs. Here we show that four additional C-terminal sites are phosphorylated in a TORC2-dependent manner, collectively defining a minimal consensus. We found that the newly identified sites are as important for Ypk1 activity, stability, and biological function as Ser644 and Thr662. Ala substitutions at the four new sites abrogated the ability of Ypk1 to rescue the phenotypes of Ypk1 deficiency, whereas Glu substitutions had no ill effect. Combining the Ala substitutions with an N-terminal mutation (D242A), which has been demonstrated to bypass the need for TORC2-mediated phosphorylation, restored the ability to complement a Ypk1-deficient cell. These findings provide new insights about the molecular basis for TORC2-dependent activation of Ypk1.


Assuntos
Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/genética , Proteínas de Saccharomyces cerevisiae/genética , Substituição de Aminoácidos , Estabilidade Enzimática , Regulação Fúngica da Expressão Gênica , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Serina/genética , Estresse Fisiológico/genética , Treonina/genética
7.
Mol Cell Biol ; 37(7)2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28069741

RESUMO

Depending on the stress, plasma membrane alterations activate or inhibit yeast target of rapamycin (TOR) complex 2, which, in turn, upregulates or downregulates the activity of its essential downstream effector, protein kinase Ypk1. Through phosphorylation of multiple substrates, Ypk1 controls many processes that restore homeostasis. One such substrate is protein kinase Fpk1, which is negatively regulated by Ypk1. Fpk1 phosphorylates and stimulates flippases that translocate aminoglycerophospholipids from the outer to the inner leaflet of the plasma membrane. Fpk1 has additional roles, but other substrates were uncharacterized. We show that Fpk1 phosphorylates and inhibits protein kinase Akl1, related to protein kinases Ark1 and Prk1, which modulate the dynamics of actin patch-mediated endocytosis. Akl1 has two Fpk1 phosphorylation sites (Ark1 and Prk1 have none) and is hypophosphorylated when Fpk1 is absent. Conversely, under conditions that inactivate TORC2-Ypk1 signaling, which alleviates Fpk1 inhibition, Akl1 is hyperphosphorylated. Monitoring phosphorylation of known Akl1 substrates (Sla1 and Ent2) confirmed that Akl1 is hyperactive when not phosphorylated by Fpk1. Fpk1-mediated negative regulation of Akl1 enhances endocytosis, because an Akl1 mutant immune to Fpk1 phosphorylation causes faster dissociation of Sla1 from actin patches, confers elevated resistance to doxorubicin (a toxic compound whose entry requires endocytosis), and impedes Lucifer yellow uptake (a marker of fluid phase endocytosis). Thus, TORC2-Ypk1, by regulating Fpk1-mediated phosphorylation of Akl1, adjusts the rate of endocytosis.


Assuntos
Endocitose , Complexos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Sequência de Aminoácidos , Regulação para Baixo , Alvo Mecanístico do Complexo 2 de Rapamicina , Modelos Biológicos , Fosforilação , Fosfosserina/metabolismo , Estabilidade Proteica , Reprodutibilidade dos Testes , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/química , Transdução de Sinais , Esfingolipídeos/metabolismo , Especificidade por Substrato
8.
Mol Biochem Parasitol ; 210(1-2): 71-84, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27678398

RESUMO

The protozoan parasite responsible for human amoebiasis is Entamoeba histolytica. An important facet of the life cycle of E. histolytica involves the conversion of the mature trophozoite to a cyst. This transition is thought to involve homologous recombination (HR), which is dependent upon the Rad51 recombinase. Here, a biochemical characterization of highly purified ehRad51 protein is presented. The ehRad51 protein preferentially binds ssDNA, forms a presynaptic filament and possesses ATP hydrolysis activity that is stimulated by the presence of DNA. Evidence is provided that ehRad51 catalyzes robust DNA strand exchange over at least 5.4 kilobase pairs. Although the homologous DNA pairing activity of ehRad51 is weak, it is strongly enhanced by the presence of two HR accessory cofactors, calcium and Hop2-Mnd1. The biochemical system described herein was used to demonstrate the potential for targeting ehRad51 with two small molecule inhibitors of human RAD51. We show that 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) inhibited ehRad51 by interfering with DNA binding and attenuated encystation in Entamoeba invadens, while B02 had no effect on ehRad51 strand exchange activity. These results provide insight into the underlying mechanism of homology-directed DNA repair in E. histolytica.


Assuntos
Entamoeba histolytica/enzimologia , Recombinação Homóloga , Proteínas de Protozoários/metabolismo , Rad51 Recombinase/metabolismo , Ácido 4,4'-Di-Isotiocianoestilbeno-2,2'-Dissulfônico/farmacologia , Trifosfato de Adenosina/metabolismo , Cálcio/metabolismo , Proteínas de Transporte , DNA/química , DNA/genética , DNA/metabolismo , Reparo do DNA , Ativação Enzimática , Hidrólise , Conformação de Ácido Nucleico , Plasmídeos/genética , Ligação Proteica/efeitos dos fármacos , Proteínas de Protozoários/genética , Proteínas de Protozoários/isolamento & purificação , Rad51 Recombinase/genética , Rad51 Recombinase/isolamento & purificação , Proteínas Recombinantes , Especificidade por Substrato
9.
Elife ; 42015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26274562

RESUMO

In eukaryotes, exposure to hypertonic conditions activates a MAPK (Hog1 in Saccharomyces cerevisiae and ortholog p38 in human cells). In yeast, intracellular glycerol accumulates to counterbalance the high external osmolarity. To prevent glycerol efflux, Hog1 action impedes the function of the aquaglyceroporin Fps1, in part, by displacing channel co-activators (Rgc1/2). However, Fps1 closes upon hyperosmotic shock even in hog1∆ cells, indicating another mechanism to prevent Fps1-mediated glycerol efflux. In our prior proteome-wide screen, Fps1 was identified as a target of TORC2-dependent protein kinase Ypk1 (Muir et al., 2014). We show here that Fps1 is an authentic Ypk1 substrate and that the open channel state of Fps1 requires phosphorylation by Ypk1. Moreover, hyperosmotic conditions block TORC2-dependent Ypk1-mediated Fps1 phosphorylation, causing channel closure, glycerol accumulation, and enhanced survival under hyperosmotic stress. These events are all Hog1-independent. Our findings define the underlying molecular basis of a new mechanism for responding to hypertonic conditions.


Assuntos
Quinase 3 da Glicogênio Sintase/metabolismo , Proteínas de Membrana/metabolismo , Viabilidade Microbiana/efeitos dos fármacos , Complexos Multiproteicos/metabolismo , Pressão Osmótica , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Regulação para Baixo , Regulação Fúngica da Expressão Gênica , Alvo Mecanístico do Complexo 2 de Rapamicina , Fosforilação , Processamento de Proteína Pós-Traducional , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia
10.
PLoS One ; 7(8): e43369, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22912864

RESUMO

BACKGROUND: BRAF(V600) inhibitors have offered a new gateway for better treatment of metastatic melanoma. However, the overall efficacy of BRAF(V600) inhibitors has been lower than expected in clinical trials, and many patients have shown resistance to the drug's effect. We hypothesized that somatic mutations in the Phosphoinositide 3-Kinase (PI3K) pathway, which promotes proliferation and survival, may coincide with BRAF(V600) mutations and contribute to chemotherapeutic resistance. METHODS: We performed a somatic mutation profiling study using the 454 FLX pyrosequencing platform in order to identify candidate cancer genes within the MAPK and PI3K pathways of melanoma patients. Somatic mutations of theses candidate cancer genes were then confirmed using Sanger sequencing. RESULTS: As expected, BRAF(V600) mutations were seen in 51% of the melanomas, whereas NRAS mutations were seen in 19% of the melanomas. However, PI3K pathway mutations, though more heterogeneous, were present in 41% of the melanoma, with PTEN being the highest mutated PI3K gene in melanomas (22%). Interestingly, several novel PI3K pathway mutations were discovered in MTOR, IRS4, PIK3R1, PIK3R4, PIK3R5, and NFKB1. PI3K pathway mutations co-occurred with BRAF(V600) mutations in 17% of the tumors and co-occurred with 9% of NRAS mutant tumors, implying cooperativity between these pathways in terms of melanoma progression. CONCLUSIONS: These novel PI3K pathway somatic mutations could provide alternative survival and proliferative pathways for metastatic melanoma cells. They therefore may be potential chemotherapeutic targets for melanoma patients who exhibit resistance to BRAF(V600) inhibitors.


Assuntos
1-Fosfatidilinositol 4-Quinase/genética , Melanoma/genética , Mutação , Transdução de Sinais/genética , Adolescente , Adulto , Idoso , Alelos , Sequência de Aminoácidos , Sequência de Bases , Análise Mutacional de DNA , Feminino , Frequência do Gene , Predisposição Genética para Doença/genética , Genótipo , Humanos , Sistema de Sinalização das MAP Quinases/genética , Masculino , Melanoma/patologia , Pessoa de Meia-Idade , Metástase Neoplásica , Proteínas Proto-Oncogênicas B-raf/genética , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Adulto Jovem , Proteínas ras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA