Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Biochim Biophys Acta Mol Basis Dis ; 1864(4 Pt A): 997-1009, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29329987

RESUMO

Friedreich's ataxia (FRDA) represents the most frequent type of autosomal-recessively inherited ataxia and is caused by the deficiency of frataxin, a mitochondrial protein. It is known that frataxin-deficiency leads to alterations in cellular and mitochondrial iron metabolism and impacts in the cell physiology at several levels. Frataxin is thought to play a role in iron-sulfur cluster biogenesis and heme synthesis. Currently, cellular antioxidant defense is dysregulated when frataxin is deficient, which exacerbates oxidative damage in FRDA. Moreover, alterations in lipid metabolism have been observed in several models of the disease. To better understand the biochemical sequelae of frataxin reduction, global protein expression analysis was performed using quantitative proteomic experiments in Friedreich's ataxia patient-derived B-lymphocytes as compared to controls. We were able to confirm a subset of changes in these cells and importantly, we observed previously unreported signatures of protein expression. Among the novel protein signatures that we have identified, the decrease in CHCHD4 might partly explain some aspects of the molecular pathogenesis of FRDA. The identification of a core set of proteins changing in the FRDA pathogenesis is a useful tool in trying to decipher the function(s) of frataxin in order to clarify the mitochondrial metabolic disease process.


Assuntos
Linfócitos B/metabolismo , Ataxia de Friedreich/metabolismo , Proteoma/metabolismo , Proteômica , Linfócitos B/patologia , Ataxia de Friedreich/patologia , Humanos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial
2.
Proc Natl Acad Sci U S A ; 112(47): 14652-7, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26553998

RESUMO

In large regions of the open ocean, iron is a limiting resource for phytoplankton. The reduction of iron quota and the recycling of internal iron pools are among the diverse strategies that phytoplankton have evolved to allow them to grow under chronically low ambient iron levels. Phytoplankton species also have evolved strategies to cope with sporadic iron supply such as long-term storage of iron in ferritin. In the picophytoplanktonic species Ostreococcus we report evidence from observations both in the field and in laboratory cultures that ferritin and the main iron-binding proteins involved in photosynthesis and nitrate assimilation pathways show opposite diurnal expression patterns, with ferritin being maximally expressed during the night. Biochemical and physiological experiments using a ferritin knock-out line subsequently revealed that this protein plays a central role in the diel regulation of iron uptake and recycling and that this regulation of iron homeostasis is essential for cell survival under iron limitation.


Assuntos
Ritmo Circadiano , Ferritinas/metabolismo , Homeostase , Ferro/metabolismo , Água do Mar/microbiologia , Western Blotting , Precipitação Química , Ritmo Circadiano/efeitos dos fármacos , Ritmo Circadiano/genética , Ritmo Circadiano/efeitos da radiação , Ferritinas/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos da radiação , Homeostase/efeitos dos fármacos , Homeostase/genética , Homeostase/efeitos da radiação , Ferro/farmacologia , Proteínas de Ligação ao Ferro/metabolismo , Cinética , Luz , Espectrometria de Massas , Viabilidade Microbiana/efeitos dos fármacos , Viabilidade Microbiana/efeitos da radiação , Fitoplâncton/efeitos dos fármacos , Fitoplâncton/genética , Fitoplâncton/crescimento & desenvolvimento , Fitoplâncton/metabolismo , Transcriptoma/genética
3.
BMC Genomics ; 17: 319, 2016 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-27142620

RESUMO

BACKGROUND: Low iron bioavailability is a common feature of ocean surface water and therefore micro-algae developed original strategies to optimize iron uptake and metabolism. The marine picoeukaryotic green alga Ostreococcus tauri is a very good model for studying physiological and genetic aspects of the adaptation of the green algal lineage to the marine environment: it has a very compact genome, is easy to culture in laboratory conditions, and can be genetically manipulated by efficient homologous recombination. In this study, we aimed at characterizing the mechanisms of iron assimilation in O. tauri by combining genetics and physiological tools. Specifically, we wanted to identify and functionally characterize groups of genes displaying tightly orchestrated temporal expression patterns following the exposure of cells to iron deprivation and day/night cycles, and to highlight unique features of iron metabolism in O. tauri, as compared to the freshwater model alga Chalamydomonas reinhardtii. RESULTS: We used RNA sequencing to investigated the transcriptional responses to iron limitation in O. tauri and found that most of the genes involved in iron uptake and metabolism in O. tauri are regulated by day/night cycles, regardless of iron status. O. tauri lacks the classical components of a reductive iron uptake system, and has no obvious iron regulon. Iron uptake appears to be copper-independent, but is regulated by zinc. Conversely, iron deprivation resulted in the transcriptional activation of numerous genes encoding zinc-containing regulation factors. Iron uptake is likely mediated by a ZIP-family protein (Ot-Irt1) and by a new Fea1-related protein (Ot-Fea1) containing duplicated Fea1 domains. The adaptation of cells to iron limitation involved an iron-sparing response tightly coordinated with diurnal cycles to optimize cell functions and synchronize these functions with the day/night redistribution of iron orchestrated by ferritin, and a stress response based on the induction of thioredoxin-like proteins, of peroxiredoxin and of tesmin-like methallothionein rather than ascorbate. We briefly surveyed the metabolic remodeling resulting from iron deprivation. CONCLUSIONS: The mechanisms of iron uptake and utilization by O. tauri differ fundamentally from those described in C. reinhardtii. We propose this species as a new model for investigation of iron metabolism in marine microalgae.


Assuntos
Clorófitas/metabolismo , Eucariotos/metabolismo , Ferro/metabolismo , Fitoplâncton/metabolismo , Adaptação Biológica , Clorófitas/classificação , Clorófitas/genética , Análise por Conglomerados , Cobre/metabolismo , Eucariotos/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos da radiação , Sequenciamento de Nucleotídeos em Larga Escala , Homeostase , Compostos de Ferro/metabolismo , Oxirredução , Fotoperíodo , Filogenia , Fitoplâncton/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transdução de Sinais , Estresse Fisiológico , Transcriptoma
4.
Plant J ; 78(6): 1073-83, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24698018

RESUMO

With fewer than 8000 genes and a minimalist cellular organization, the green picoalga Ostreococcus tauri is one of the simplest photosynthetic eukaryotes. Ostreococcus tauri contains many plant-specific genes but exhibits a very low gene redundancy. The haploid genome is extremely dense with few repeated sequences and rare transposons. Thanks to the implementation of genetic transformation and vectors for inducible overexpression/knockdown this picoeukaryotic alga has emerged in recent years as a model organism for functional genomics analyses and systems biology. Here we report the development of an efficient gene targeting technique which we use to knock out the nitrate reductase and ferritin genes and to knock in a luciferase reporter in frame to the ferritin native protein. Furthermore, we show that the frequency of insertion by homologous recombination is greatly enhanced when the transgene is designed to replace an existing genomic insertion. We propose that a natural mechanism based on homologous recombination may operate to remove inserted DNA sequences from the genome.


Assuntos
Clorófitas/genética , Marcação de Genes/métodos , Recombinação Homóloga , Proteínas de Algas/genética , Ferritinas/genética , Técnicas de Introdução de Genes , Técnicas de Inativação de Genes , Genes Reporter , Genoma de Planta , Luciferases/genética , Nitrato Redutase/genética , Transformação Genética
5.
Eukaryot Cell ; 13(2): 231-9, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24297440

RESUMO

The anaerobic intestinal pathogen Giardia intestinalis does not possess enzymes for heme synthesis, and it also lacks the typical set of hemoproteins that are involved in mitochondrial respiration and cellular oxygen stress management. Nevertheless, G. intestinalis may require heme for the function of particular hemoproteins, such as cytochrome b5 (cytb5). We have analyzed the sequences of eukaryotic cytb5 proteins and identified three distinct cytb5 groups: group I, which consists of C-tail membrane-anchored cytb5 proteins; group II, which includes soluble cytb5 proteins; and group III, which comprises the fungal cytb5 proteins. The majority of eukaryotes possess both group I and II cytb5 proteins, whereas three Giardia paralogs belong to group II. We have identified a fourth Giardia cytb5 paralog (gCYTb5-IV) that is rather divergent and possesses an unusual 134-residue N-terminal extension. Recombinant Giardia cytb5 proteins, including gCYTb5-IV, were expressed in Escherichia coli and exhibited characteristic UV-visible spectra that corresponded to heme-loaded cytb5 proteins. The expression of the recombinant gCYTb5-IV in G. intestinalis resulted in the increased import of extracellular heme and its incorporation into the protein, whereas this effect was not observed when gCYTb5-IV containing a mutated heme-binding site was expressed. The electrons for Giardia cytb5 proteins may be provided by the NADPH-dependent Tah18-like oxidoreductase GiOR-1. Therefore, GiOR-1 and cytb5 may constitute a novel redox system in G. intestinalis. To our knowledge, G. intestinalis is the first anaerobic eukaryote in which the presence of heme has been directly demonstrated.


Assuntos
Citocromos b5/metabolismo , Citoplasma/metabolismo , Giardia/metabolismo , Heme/metabolismo , Proteínas de Protozoários/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Citocromos b5/química , Giardia/química , Dados de Sequência Molecular , Ligação Proteica , Transporte Proteico , Proteínas de Protozoários/química
6.
Biometals ; 27(1): 75-88, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24281777

RESUMO

We compared ferric EDTA, ferric citrate and ferrous ascorbate as iron sources to study iron metabolism in Ostreococcus tauri, Phaeodactlylum tricornutum and Emiliania huxleyi. Ferric EDTA was a better iron source than ferric citrate for growth and chlorophyll levels. Direct and indirect experiments showed that iron was much more available to the cells when provided as ferric citrate as compared to ferric EDTA. As a consequence, growth media with iron concentration in the range 1-100 nM were rapidly iron-depleted when ferric citrate-but not ferric EDTA was the iron source. When cultured together, P. tricornutum cells overgrew the two other species in iron-sufficient conditions, but E. huxleyi was able to compete other species in iron-deficient conditions, and when iron was provided as ferric citrate instead of ferric EDTA, which points out the critical influence of the chemical form of iron on the blooms of some phytoplankton species. The use of ferric citrate and ferrous ascorbate allowed us to unravel a kind of regulation of iron uptake that was dependent on the day/night cycles and to evidence independent uptake systems for ferrous and ferric iron, which can be regulated independently and be copper-dependent or independent. The same iron sources also allowed one to identify molecular components involved in iron uptake and storage in marine micro-algae. Characterizing the mechanisms of iron metabolism in the phytoplankton constitutes a big challenge; we show here that the use of iron sources more readily available to the cells than ferric EDTA is critical for this task.


Assuntos
Organismos Aquáticos/metabolismo , Ácido Ascórbico/metabolismo , Compostos Férricos/metabolismo , Ferro/metabolismo , Microalgas/metabolismo , Organismos Aquáticos/citologia , Ácido Ascórbico/química , Células Cultivadas , Ácido Edético/química , Ácido Edético/metabolismo , Compostos Férricos/química , Ferro/química , Microalgas/citologia
7.
Plant Physiol ; 160(4): 2271-84, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23033141

RESUMO

We investigated iron uptake mechanisms in five marine microalgae from different ecologically important phyla: the diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana, the prasinophyceae Ostreococcus tauri and Micromonas pusilla, and the coccolithophore Emiliania huxleyi. Among these species, only the two diatoms were clearly able to reduce iron, via an inducible (P. tricornutum) or constitutive (T. pseudonana) ferrireductase system displaying characteristics similar to the yeast (Saccharomyces cerevisiae) flavohemoproteins proteins. Iron uptake mechanisms probably involve very different components according to the species, but the species we studied shared common features. Regardless of the presence and/or induction of a ferrireductase system, all the species were able to take up both ferric and ferrous iron, and iron reduction was not a prerequisite for uptake. Iron uptake decreased with increasing the affinity constants of iron-ligand complexes and with increasing ligand-iron ratios. Therefore, at least one step of the iron uptake mechanism involves a thermodynamically controlled process. Another step escapes to simple thermodynamic rules and involves specific and strong binding of ferric as well as ferrous iron at the cell surface before uptake of iron. Binding was paradoxically increased in iron-rich conditions, whereas uptake per se was induced in all species only after prolonged iron deprivation. We sought cell proteins loaded with iron following iron uptake. One such protein in O. tauri may be ferritin, and in P. tricornutum, Isip1 may be involved. We conclude that the species we studied have uptake systems for both ferric and ferrous iron, both involving specific iron binding at the cell surface.


Assuntos
Organismos Aquáticos/metabolismo , Membrana Celular/metabolismo , Ferro/metabolismo , Microalgas/metabolismo , Organismos Aquáticos/crescimento & desenvolvimento , Autorradiografia , Membrana Celular/efeitos dos fármacos , Transporte de Elétrons/efeitos dos fármacos , FMN Redutase/metabolismo , Quelantes de Ferro/farmacologia , Cinética , Ligantes , Microalgas/efeitos dos fármacos , Microalgas/enzimologia , Microalgas/crescimento & desenvolvimento , Modelos Biológicos , Oxirredução/efeitos dos fármacos , Filogenia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo
8.
Biochem J ; 441(1): 473-80, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21936771

RESUMO

Frataxin is a conserved mitochondrial protein deficient in patients with Friedreich's ataxia. Frataxin has been implicated in control of iron homoeostasis and Fe-S cluster assembly. In yeast or human mitochondria, frataxin interacts with components of the Fe-S cluster synthesis machinery, including the cysteine desulfurase Nfs1, accessory protein Isd11 and scaffold protein Isu. In the present paper, we report that a single amino acid substitution (methionine to isoleucine) at position 107 in the mature form of Isu1 restored many deficient functions in Δyfh1 or frataxin-depleted yeast cells. Iron homoeostasis was improved such that soluble/usable mitochondrial iron was increased and accumulation of insoluble/non-usable iron within mitochondria was largely prevented. Cytochromes were returned to normal and haem synthesis was restored. In mitochondria carrying the mutant Isu1 and no frataxin, Fe-S cluster enzyme activities were improved. The efficiency of new Fe-S cluster synthesis in isolated mitochondria was markedly increased compared with frataxin-negative cells, although the response to added iron was minimal. The M107I substitution in the highly conserved Isu scaffold protein is typically found in bacterial orthologues, suggesting that a unique feature of the bacterial Fe-S cluster machinery may be involved. The mechanism by which the mutant Isu bypasses the absence of frataxin remains to be determined, but could be related to direct effects on Fe-S cluster assembly and/or indirect effects on mitochondrial iron availability.


Assuntos
Proteínas de Ligação ao Ferro/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Substituição de Aminoácidos , Deleção de Genes , Regulação Fúngica da Expressão Gênica/fisiologia , Ferro/metabolismo , Proteínas de Ligação ao Ferro/genética , Proteínas Ferro-Enxofre/genética , Malato Desidrogenase/genética , Malato Desidrogenase/metabolismo , Proteínas Mitocondriais/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Frataxina
9.
J Biol Chem ; 286(8): 6071-9, 2011 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-21189251

RESUMO

Saccharomyces cerevisiae cells lacking the yeast frataxin homologue (Δyfh1) accumulate iron in the mitochondria in the form of nanoparticles of ferric phosphate. The phosphate content of Δyfh1 mitochondria was higher than that of wild-type mitochondria, but the proportion of mitochondrial phosphate that was soluble was much lower in Δyfh1 cells. The rates of phosphate and iron uptake in vitro by isolated mitochondria were higher for Δyfh1 than wild-type mitochondria, and a significant proportion of the phosphate and iron rapidly became insoluble in the mitochondrial matrix, suggesting co-precipitation of these species after oxidation of iron by oxygen. Increasing the amount of phosphate in the medium decreased the amount of iron accumulated by Δyfh1 cells and improved their growth in an iron-dependent manner, and this effect was mostly transcriptional. Overexpressing the major mitochondrial phosphate carrier, MIR1, slightly increased the concentration of soluble mitochondrial phosphate and significantly improved various mitochondrial functions (cytochromes, [Fe-S] clusters, and respiration) in Δyfh1 cells. We conclude that in Δyfh1 cells, soluble phosphate is limiting, due to its co-precipitation with iron.


Assuntos
Proteínas de Ligação ao Ferro/metabolismo , Ferro/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Fosfatos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Oxirredução , Proteínas de Transporte de Fosfato/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Frataxina
10.
Biochem J ; 440(1): 137-46, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21777202

RESUMO

Mitochondria transport and utilize iron for the synthesis of haem and Fe-S clusters. Although many proteins are known to be involved in these processes, additional proteins are likely to participate. To test this hypothesis, in the present study we used a genetic screen looking for yeast mutants that are synthetically lethal with the mitochondrial iron carriers Mrs3 and Mrs4. Several genes were identified, including an isolate mutated for Yfh1, the yeast frataxin homologue. All such triple mutants were complemented by increased expression of Rim2, another mitochondrial carrier protein. Rim2 overexpression was able to enhance haem and Fe-S cluster synthesis in wild-type or Δmrs3/Δmrs4 backgrounds. Conversely Rim2 depletion impaired haem and Fe-S cluster synthesis in wild-type or Δmrs3/Δmrs4 backgrounds, indicating a unique requirement for this mitochondrial transporter for these processes. Rim2 was previously shown to mediate pyrimidine exchange in and out of vesicles. In the present study we found that isolated mitochondria lacking Rim2 exhibited concordant iron defects and pyrimidine transport defects, although the connection between these two functions is not explained. When organellar membranes were ruptured to bypass iron transport, haem synthesis from added iron and porphyrin was still markedly deficient in Rim2-depleted mitochondrial lysate. The results indicate that Rim2 is a pyrimidine exchanger with an additional unique function in promoting mitochondrial iron utilization.


Assuntos
Ferro/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte de Nucleotídeos/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte de Cátions/deficiência , Proteínas de Transporte de Cátions/metabolismo , Proteínas Ferro-Enxofre/biossíntese , Proteínas Mitocondriais/deficiência , Proteínas Mitocondriais/metabolismo , Pirimidinas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
J Vis Exp ; (183)2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35695534

RESUMO

The study of elements with X-ray absorption spectroscopy (XAS) is of particular interest when studying the role of metals in biological systems. Sample preparation is a key and often complex procedure, particularly for biological samples. Although X-ray speciation techniques are widely used, no detailed protocol has been yet disseminated for users of the technique. Further, chemical state modification is of concern, and cryo-based techniques are recommended to analyze the biological samples in their near-native hydrated state to provide the maximum preservation of chemical integrity of the cells or tissues. Here, we propose a cellular preparation protocol based on cryo-preserved samples. It is demonstrated in a high energy resolution fluorescence detected X-ray absorption spectroscopy study of selenium in cancer cells and a study of iron in phytoplankton. This protocol can be used with other biological samples and other X-ray techniques that can be damaged by irradiation.


Assuntos
Selênio , Metais , Temperatura , Espectroscopia por Absorção de Raios X/métodos
12.
Plant Direct ; 6(12): e472, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36582220

RESUMO

The model pennate diatom Phaeodactylum tricornutum is able to assimilate a range of iron sources. It therefore provides a platform to study different mechanisms of iron processing concomitantly in the same cell. In this study, we follow the localization of three iron starvation induced proteins (ISIPs) in vivo, driven by their native promoters and tagged by fluorophores in an engineered line of P. tricornutum. We find that the localization patterns of ISIPs are dynamic and variable depending on the overall iron status of the cell and the source of iron it is exposed to. Notwithstanding, a shared destination of the three ISIPs both under ferric iron and siderophore-bound iron supplementation is a globular compartment in the vicinity of the chloroplast. In a proteomic analysis, we identify that the cell engages endocytosis machinery involved in the vesicular trafficking as a response to siderophore molecules, even when these are not bound to iron. Our results suggest that there may be a direct vesicle traffic connection between the diatom cell membrane and the periplastidial compartment (PPC) that co-opts clathrin-mediated endocytosis and the "cytoplasm to vacuole" (Cvt) pathway, for proteins involved in iron assimilation. Proteomics data are available via ProteomeXchange with identifier PXD021172. Highlight: The marine diatom P. tricornutum engages a vesicular network to traffic siderophores and phytotransferrin from the cell membrane directly to a putative iron processing site in the vicinity of the chloroplast.

13.
J Biol Chem ; 285(35): 26737-26743, 2010 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-20522547

RESUMO

Friedreich ataxia is an inherited neurodegenerative disease caused by frataxin deficiency. Frataxin is a conserved mitochondrial protein that plays a role in FeS cluster assembly in mitochondria. FeS clusters are modular cofactors that perform essential functions throughout the cell. They are synthesized by a multistep and multisubunit mitochondrial machinery that includes the scaffold protein Isu for assembling a protein-bound FeS cluster intermediate. Frataxin interacts with Isu, iron, and the cysteine desulfurase Nfs1, which supplies sulfide, thus placing it at the center of mitochondrial FeS cluster biosynthesis.


Assuntos
Proteínas de Ligação ao Ferro/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Ferro/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Sulfetos/metabolismo , Animais , Liases de Carbono-Enxofre/genética , Liases de Carbono-Enxofre/metabolismo , Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Humanos , Proteínas de Ligação ao Ferro/genética , Proteínas Ferro-Enxofre/genética , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Frataxina
14.
Biochim Biophys Acta ; 1802(6): 531-8, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20307653

RESUMO

Yeast cells deficient in the yeast frataxin homolog (Yfh1p) accumulate iron in their mitochondria. Whether this iron is toxic, however, remains unclear. We showed that large excesses of iron in the growth medium did not inhibit growth and did not decrease cell viability. Increasing the ratio of mitochondrial iron-to-Yfh1p by decreasing the steady-state level of Yfh1p to less than 100 molecules per cell had very few deleterious effects on cell physiology, even though the mitochondrial iron concentration greatly exceeded the iron-binding capacity of Yfh1p in these conditions. Mössbauer spectroscopy and FPLC analyses of whole mitochondria or of isolated mitochondrial matrices showed that the chemical and biochemical forms of the accumulated iron in mitochondria of mutant yeast strains (Deltayfh1, Deltaggc1 and Deltassq1) displayed a nearly identical distribution. This was also the case for Deltaggc1 cells, in which Yfh1p was overproduced. In these mitochondria, most of the iron was insoluble, and the ratio of soluble-to-insoluble iron did not change when the amount of Yfh1p was increased up to 4500 molecules per cell. Our results do not privilege the hypothesis of Yfh1p being an iron storage protein in vivo.


Assuntos
Proteínas de Ligação ao Ferro/metabolismo , Ferro/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Genes Fúngicos , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Ligação ao Ferro/química , Proteínas de Ligação ao Ferro/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Modelos Biológicos , Mutação , Estresse Oxidativo , Multimerização Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Solubilidade , Espectroscopia de Mossbauer , Frataxina
15.
Plant Physiol ; 154(2): 991-1000, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20724644

RESUMO

Chromera velia is a newly cultured photosynthetic marine alveolate. This microalga has a high iron requirement for respiration and photosynthesis, although its natural environment contains less than 1 nm of this metal. We found that this organism uses a novel mechanism of iron uptake, differing from the classic reductive and siderophore-mediated iron uptake systems characterized in the model yeast Saccharomyces cerevisiae and present in most yeasts and terrestrial plants. C. velia has no trans-plasma membrane electron transfer system, and thus cannot reduce extracellular ferric chelates. It is also unable to use hydroxamate siderophores as iron sources. Iron uptake from ferric citrate by C. velia is not inhibited by a ferrous chelator, but the rate of uptake is strongly decreased by increasing the ferric ligand (citrate) concentration. The cell wall contains a large number of iron binding sites, allowing the cells to concentrate iron in the vicinity of the transport sites. We describe a model of iron uptake in which aqueous ferric ions are first concentrated in the cell wall before being taken up by the cells without prior reduction. We discuss our results in relation to the strategies used by the phytoplankton to take up iron in the oceans.


Assuntos
Alveolados/metabolismo , Parede Celular/metabolismo , Ferro/metabolismo , Transporte Biológico , FMN Redutase/metabolismo , Compostos Férricos/metabolismo , Saccharomyces cerevisiae/metabolismo , Sideróforos/metabolismo
16.
mSystems ; 6(1)2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33563784

RESUMO

The productivity of the ocean is largely dependent on iron availability, and marine phytoplankton have evolved sophisticated mechanisms to cope with chronically low iron levels in vast regions of the open ocean. By analyzing the metabarcoding data generated from the Tara Oceans expedition, we determined how the global distribution of the model marine chlorarachniophyte Bigelowiella natans varies across regions with different iron concentrations. We performed a comprehensive proteomics analysis of the molecular mechanisms underpinning the adaptation of B. natans to iron scarcity and report on the temporal response of cells to iron enrichment. Our results highlight the role of phytotransferrin in iron homeostasis and indicate the involvement of CREG1 protein in the response to iron availability. Analysis of the Tara Oceans metagenomes and metatranscriptomes also points to a similar role for CREG1, which is found to be widely distributed among marine plankton but to show a strong bias in gene and transcript abundance toward iron-deficient regions. Our analyses allowed us to define a new subfamily of the CobW domain-containing COG0523 putative metal chaperones which are involved in iron metabolism and are restricted to only a few phytoplankton lineages in addition to B. natans At the physiological level, we elucidated the mechanisms allowing a fast recovery of PSII photochemistry after resupply of iron. Collectively, our study demonstrates that B. natans is well adapted to dynamically respond to a changing iron environment and suggests that CREG1 and COG0523 are important components of iron homeostasis in B. natans and other phytoplankton.IMPORTANCE Despite low iron availability in the ocean, marine phytoplankton require considerable amounts of iron for their growth and proliferation. While there is a constantly growing knowledge of iron uptake and its role in the cellular processes of the most abundant marine photosynthetic groups, there are still largely overlooked branches of the eukaryotic tree of life, such as the chlorarachniophytes. In the present work, we focused on the model chlorarachniophyte Bigelowiella natans, integrating physiological and proteomic analyses in culture conditions with the mining of omics data generated by the Tara Oceans expedition. We provide unique insight into the complex responses of B. natans to iron availability, including novel links to iron metabolism conserved in other phytoplankton lineages.

17.
Traffic ; 9(8): 1372-91, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18489705

RESUMO

Eukaryotic plasma membrane transporters are subjected to a tightly regulated intracellular trafficking. The yeast siderophore iron transporter1 (Sit1) displays substrate-regulated trafficking. It is targeted to the plasma membrane or to a vacuolar degradative pathway when synthesized in the presence or absence of external substrate, respectively. Sorting of Sit1 to the vacuolar pathway is dependent on the clathrin adaptor Gga2, and more specifically on its C-GAT subdomain. Plasma membrane undergoes substrate-induced ubiquitylation dependent on the Rsp5 ubiquitin protein ligase. Sit1 is also ubiquitylated in an Rsp5-dependent manner in internal compartments when expressed in the absence of substrate. In several rsp5 mutants including cells deleted for RSP5, Sit1 expressed in the absence of substrate is correctly targeted to the endosomal pathway but its sorting to multivesicular bodies (MVBs) is impaired. Consequently, it displays endosome to plasma membrane targeting, with kinetics similar to those observed in vps mutants defective for MVB sorting. Plasma membrane Sit1 is modified by Lys63-linked ubiquitin chains. We also show for the first time in yeast that modification by this latter type of ubiquitin chains is required directly or indirectly for efficient MVB sorting, as it is for efficient internalization at the plasma membrane.


Assuntos
Proteínas de Membrana Transportadoras/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/fisiologia , Sideróforos/metabolismo , Ubiquitina/química , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Endocitose , Complexos Endossomais de Distribuição Requeridos para Transporte , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Modelos Biológicos , Mutação , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato , Ubiquitina/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo
18.
Hum Mol Genet ; 17(18): 2790-802, 2008 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-18562474

RESUMO

Friedreich's ataxia is a neurodegenerative disease caused by reduced expression of the mitochondrial protein frataxin. The main phenotypic features of frataxin-deficient human and yeast cells include iron accumulation in mitochondria, iron-sulphur cluster defects and high sensitivity to oxidative stress. Glutathione is a major protective agent against oxidative damage and glutathione-related systems participate in maintaining the cellular thiol/disulfide status and the reduced environment of the cell. Here, we present the first detailed biochemical study of the glutathione-dependent redox status of wild-type and frataxin-deficient cells in a yeast model of the disease. There were five times less total glutathione (GSH+GSSG) in frataxin-deficient cells, imbalanced GSH/GSSG pools and higher glutathione peroxidase activity. The pentose phosphate pathway was stimulated in frataxin-deficient cells, glucose-6-phosphate dehydrogenase activity was three times higher than in wild-type cells and this was coupled to a defect in the NADPH/NADP(+) pool. Moreover, analysis of gene expression confirms the adaptative response of mutant cells to stress conditions and we bring evidence for a strong relation between the glutathione-dependent redox status of the cells and iron homeostasis. Dynamic studies show that intracellular glutathione levels reflect an adaptation of cells to iron stress conditions, and allow to distinguish constitutive stress observed in frataxin-deficient cells from the acute response of wild-type cells. In conclusion, our findings provide evidence for an impairment of glutathione homeostasis in a yeast model of Friedreich's ataxia and identify glutathione as a valuable indicator of the redox status of frataxin-deficient cells.


Assuntos
Ataxia de Friedreich/metabolismo , Glutationa/metabolismo , Proteínas de Ligação ao Ferro/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ataxia de Friedreich/genética , Humanos , Ferro/metabolismo , Proteínas de Ligação ao Ferro/genética , Oxirredução , Via de Pentose Fosfato , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Compostos de Sulfidrila/metabolismo , Frataxina
19.
Front Microbiol ; 11: 566691, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33250865

RESUMO

Oceanic phytoplankton species have highly efficient mechanisms of iron acquisition, as they can take up iron from environments in which it is present at subnanomolar concentrations. In eukaryotes, three main models were proposed for iron transport into the cells by first studying the kinetics of iron uptake in different algal species and then, more recently, by using modern biological techniques on the model diatom Phaeodactylum tricornutum. In the first model, the rate of uptake is dependent on the concentration of unchelated Fe species, and is thus limited thermodynamically. Iron is transported by endocytosis after carbonate-dependent binding of Fe(III)' (inorganic soluble ferric species) to phytotransferrin at the cell surface. In this strategy the cells are able to take up iron from very low iron concentration. In an alternative model, kinetically limited for iron acquisition, the extracellular reduction of all iron species (including Fe') is a prerequisite for iron acquisition. This strategy allows the cells to take up iron from a great variety of ferric species. In a third model, hydroxamate siderophores can be transported by endocytosis (dependent on ISIP1) after binding to the FBP1 protein, and iron is released from the siderophores by FRE2-dependent reduction. In prokaryotes, one mechanism of iron uptake is based on the use of siderophores excreted by the cells. Iron-loaded siderophores are transported across the cell outer membrane via a TonB-dependent transporter (TBDT), and are then transported into the cells by an ABC transporter. Open ocean cyanobacteria do not excrete siderophores but can probably use siderophores produced by other organisms. In an alternative model, inorganic ferric species are transported through the outer membrane by TBDT or by porins, and are taken up by the ABC transporter system FutABC. Alternatively, ferric iron of the periplasmic space can be reduced by the alternative respiratory terminal oxidase (ARTO) and the ferrous ions can be transported by divalent metal transporters (FeoB or ZIP). After reoxidation, iron can be taken up by the high-affinity permease Ftr1.

20.
Microbiologyopen ; 9(2): e970, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31788966

RESUMO

Candida albicans is an opportunist pathogen responsible for a large spectrum of infections, from superficial mycosis to systemic diseases known as candidiasis. Its ability to grow in different morphological forms, such as yeasts or filamentous hyphae, contributes to its survival in diverse microenvironments. Iron uptake has been associated with virulence, and C. albicans has developed elaborate strategies for acquiring iron from its host. In this work, we analyze the metabolic changes in response to changes in iron content in the growth medium and compare C. albicans adaptation to the presence or absence of iron. Functional and morphological studies, correlated to a quantitative proteomic analysis, were performed to assess the specific pathways underlying the response to iron, both in the yeast and filamentous forms. Overall, the results show that the adaptive response to iron is associated with a metabolic remodeling affecting the energetic pathways of the pathogen. This includes changes in the thiol-dependent redox status, the activity of key mitochondrial enzymes and the respiratory chain. Iron deficiency stimulates bioenergetic pathways, whereas iron-rich condition is associated with greater biosynthetic needs, particularly in filamentous forms. Moreover, we found that C. albicans yeast cells have an extraordinary capability to adapt to changes in environmental conditions.


Assuntos
Adaptação Biológica , Candida albicans/fisiologia , Candidíase/microbiologia , Metabolismo Energético , Ferro/metabolismo , Trifosfato de Adenosina/metabolismo , Transporte Biológico , Cromatografia Líquida , Proteínas Fúngicas/metabolismo , Glutationa/metabolismo , Redes e Vias Metabólicas , Mitocôndrias/metabolismo , Oxirredução , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Espectrometria de Massas em Tandem , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA