Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomicrofluidics ; 15(6): 064104, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34853627

RESUMO

While in most cases, jaundice can be effectively treated using phototherapy, severe cases require exchange transfusion, a relatively risky procedure in which the neonate's bilirubin-rich blood is replaced with donor blood. Here, we examine extracorporeal blood treatment in a microfluidic photoreactor as an alternative to exchange transfusion. This new treatment approach relies on the same principle as phototherapy but leverages microfluidics to speed up bilirubin removal. Our results demonstrate that high-intensity light at 470 nm can be used to rapidly reduce bilirubin levels without causing appreciable damage to DNA in blood cells. Light at 470 nm was more effective than light at 505 nm. Studies in Gunn rats show that photoreactor treatment for 4 h significantly reduces bilirubin levels, similar to the bilirubin reduction observed for exchange transfusion and on a similar time scale. Predictions for human neonates demonstrate that this new treatment approach is expected to exceed the performance of exchange transfusion using a low blood flow rate and priming volume, which will facilitate vascular access and improve safety.

2.
ACS Sens ; 5(7): 1882-1889, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32545953

RESUMO

One of the main challenges for implantable biomedical sensing schemes is obtaining a reliable signal while maintaining biocompatibility. In this work, we demonstrate that a combination of medical ultrasound imaging and smart hydrogel micromechanical resonators can be employed for continuous monitoring of analyte concentrations. The sensing principle is based on the shift of the mechanical resonance frequencies of smart hydrogel structures induced by their volume-phase transition in response to changing analyte levels. This shift can then be measured as a contrast change in the ultrasound images due to resonance absorption of ultrasound waves. This concept eliminates the need for implanting complex electronics or employing transcutaneous connections for sensing biomedical analytes in vivo. Here, we present proof-of-principle experiments that monitor in vitro changes in ionic strength and glucose concentrations to demonstrate the capabilities and potential of this versatile sensing platform technology.


Assuntos
Eletrônica , Hidrogéis , Ultrassonografia , Monitorização Fisiológica , Próteses e Implantes
3.
Bioinspir Biomim ; 14(2): 026003, 2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30562726

RESUMO

We present a bio-inspired hydrogel magnetometer where the cell potential (V oc) between two hydrogels is used to measure an external magnetic field. Ferromagnetic particles located in the hydrogels move in response to the external field and change the V oc (sensitivity ~ 3.7 V T-1). As the field becomes larger than a critical field B c (~38 mT), these particles puncture the hydrogel boundary shorting out the concentration gradient region and abruptly reducing the V oc (sensitivity ~ 23.5 V T-1). In this regime, the V oc behaves similar to the neuron firing. In subsequent measurement cycles, the particles remain in punctured holes and the sensor behaviour is neuron-like with lower sensitivity (~20 V T-1). V oc also changes as a function of pressure (8 mV kPa-1) and temperature (2 mV K-1). After 4 h, the ionic concentration gradient diminishes in the device, and similar to biological cell fatigue, V oc decreases and can be recharged with many different techniques.


Assuntos
Células Artificiais/química , Biomimética/instrumentação , Hidrogéis/química , Imãs/química , Íons/química
4.
Micromachines (Basel) ; 9(10)2018 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30424459

RESUMO

This paper presents two novel techniques for monitoring the response of smart hydrogels composed of synthetic organic materials that can be engineered to respond (swell or shrink, change conductivity and optical properties) to specific chemicals, biomolecules or external stimuli. The first technique uses microwaves both in contact and remote monitoring of the hydrogel as it responds to chemicals. This method is of great interest because it can be used to non-invasively monitor the response of subcutaneously implanted hydrogels to blood chemicals such as oxygen and glucose. The second technique uses a metal-oxide-hydrogel field-effect transistor (MOHFET) and its associated current-voltage characteristics to monitor the hydrogel's response to different chemicals. MOHFET can be easily integrated with on-board telemetry electronics for applications in implantable biosensors or it can be used as a transistor in an oscillator circuit where the oscillation frequency of the circuit depends on the analyte concentration.

5.
Gels ; 4(4)2018 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-30674860

RESUMO

There is a strong commercial need for inexpensive point-of-use sensors for monitoring disease biomarkers or environmental contaminants in drinking water. Point-of-use sensors that employ smart polymer hydrogels as recognition elements can be tailored to detect almost any target analyte, but often suffer from long response times. Hence, we describe here a fabrication process that can be used to manufacture low-cost point-of-use hydrogel-based microfluidics sensors with short response times. In this process, mask-templated UV photopolymerization is used to produce arrays of smart hydrogel pillars inside sub-millimeter channels located upon microfluidics devices. When these pillars contact aqueous solutions containing a target analyte, they swell or shrink, thereby changing the resistance of the microfluidic channel to ionic current flow when a small bias voltage is applied to the system. Hence resistance measurements can be used to transduce hydrogel swelling changes into electrical signals. The only instrumentation required is a simple portable potentiostat that can be operated using a smartphone or a laptop, thus making the system suitable for point of use. Rapid hydrogel response rate is achieved by fabricating arrays of smart hydrogels that have large surface area-to-volume ratios.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA