Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Infect Dis ; 229(4): 1077-1087, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37602681

RESUMO

Hepatitis B Virus (HBV) is a major driver of infectious disease mortality. Curative therapies are needed and ideally should induce CD8 T cell-mediated clearance of infected hepatocytes plus anti-hepatitis B surface antigen (HBsAg) antibodies (anti-HBs) to neutralize residual virus. We developed a novel therapeutic vaccine using non-replicating arenavirus vectors. Antigens were screened for genotype conservation and magnitude and genotype reactivity of T cell response, then cloned into Pichinde virus (PICV) vectors (recombinant PICV, GS-2829) and lymphocytic choriomeningitis virus (LCMV) vectors (replication-incompetent, GS-6779). Alternating immunizations with GS-2829 and GS-6779 induced high-magnitude HBV T cell responses, and high anti-HBs titers. Dose schedule optimization in macaques achieved strong polyfunctional CD8 T cell responses against core, HBsAg, and polymerase and high titer anti-HBs. In AAV-HBV mice, GS-2829 and GS-6779 were efficacious in animals with low pre-treatment serum HBsAg. Based on these results, GS-2829 and GS-6779 could become a central component of cure regimens.


Assuntos
Arenavirus , Hepatite B , Camundongos , Animais , Antígenos de Superfície da Hepatite B , Vírus da Hepatite B/genética , Vacinas contra Hepatite B , Anticorpos Anti-Hepatite B , Imunização , Linfócitos T CD8-Positivos , Genótipo , Antígenos de Superfície
2.
Am J Pathol ; 182(5): 1900-9, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23499551

RESUMO

Cancer cells are often characterized by high proliferation rates, a consequence of increased mitotic signaling coupled with unchecked cellular growth. We recently demonstrated that vascular endothelial cells unexpectedly express ferlins, a family of muscle-specific proteins capable of regulating the fusion of lipid patches to the plasma membrane, and that these highly regulated membrane fusion events are essential to endothelial cell proliferation and homeostasis. Here, we show that human and mouse breast cancer cell lines also express myoferlin at various levels, and that the processes of transformation, epithelial-mesenchymal transition, and metastasis do not appear to have any effect on myoferlin expression in vitro. In vivo, we observed that solid mouse and human carcinoma tissues also express high levels of myoferlin protein. Loss-of-function studies performed in mice revealed that myoferlin gene knockdown can attenuate cancer cell proliferation in vitro and decrease tumor burden, and that accelerated tumor cell growth appears to rely on intact myoferlin-dependent membrane repair and signaling under exponential growth conditions. To our knowledge, these data provide the first evidence of myoferlin expression in solid human and mouse tumors. We have thus identified a novel membrane repair process that likely helps sustain the high growth rates characteristic of tumors, and we suggest that interfering with normal myoferlin expression and/or membrane repair and remodeling may provide therapeutically relevant antiproliferative effects.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Carcinogênese/metabolismo , Carcinogênese/patologia , Carcinoma/metabolismo , Carcinoma/patologia , Membrana Celular/patologia , Proteínas de Membrana/metabolismo , Proteínas Musculares/metabolismo , Idoso , Animais , Carcinoma/irrigação sanguínea , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Proliferação de Células , Feminino , Técnicas de Silenciamento de Genes , Humanos , Camundongos
3.
Biochem Biophys Res Commun ; 415(2): 263-9, 2011 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-22037454

RESUMO

Dysferlin is a membrane-anchored protein known to facilitate membrane repair in skeletal muscles following mechanical injury. Mutations of dysferlin gene impair sarcolemma integrity, a hallmark of certain forms of muscular dystrophy in patients. Dysferlin contains seven calcium-dependent C2 binding domains, which are required to promote fusion of intracellular membrane vesicles. Emerging evidence reveal the unexpected expression of dysferlin in non-muscle, non-mechanically active tissues, such as endothelial cells, which cast doubts over the belief that ferlin proteins act exclusively as membrane repair proteins. We and others have shown that deficient trafficking of membrane bound proteins in dysferlin-deficient cells, suggesting that dysferlin might mediate trafficking of client proteins. Herein, we describe the intracellular trafficking and movement of GFP-dysferlin positive vesicles in unfixed reconstituted cells using live microscopy. By performing GST pull-down assays followed by mass spectrometry, we identified dysferlin binding protein complexes in human vascular endothelial cells. Together, our data further support the claims that dysferlin not only mediates membrane repair but also trafficking of client proteins, ultimately, help bridging dysferlinopathies to aberrant membrane signaling.


Assuntos
Membrana Celular/metabolismo , Endotélio Vascular/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Musculares/metabolismo , Animais , Células COS , Chlorocebus aethiops , Disferlina , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Espectrometria de Massas , Transporte Proteico , Proteômica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
4.
Arterioscler Thromb Vasc Biol ; 30(11): 2196-204, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20724702

RESUMO

OBJECTIVE: Ferlins are known to regulate plasma membrane repair in muscle cells and are linked to muscular dystrophy and cardiomyopathy. Recently, using proteomic analysis of caveolae/lipid rafts, we reported that endothelial cells (EC) express myoferlin and that it regulates membrane expression of vascular endothelial growth factor receptor 2 (VEGFR-2). The goal of this study was to document the presence of other ferlins in EC. METHODS AND RESULTS: EC expressed another ferlin, dysferlin, and that in contrast to myoferlin, it did not regulate VEGFR-2 expression levels or downstream signaling (nitric oxide and Erk1/2 phosphorylation). Instead, loss of dysferlin in subconfluent EC resulted in deficient adhesion followed by growth arrest, an effect not observed in confluent EC. In vivo, dysferlin was also detected in intact and diseased blood vessels of rodent and human origin, and angiogenic challenge of dysferlin-null mice resulted in impaired angiogenic response compared with control mice. Mechanistically, loss of dysferlin in cultured EC caused polyubiquitination and proteasomal degradation of platelet endothelial cellular adhesion molecule-1 (PECAM-1/CD31), an adhesion molecule essential for angiogenesis. In addition, adenovirus-mediated gene transfer of PECAM-1 rescued the abnormal adhesion of EC caused by dysferlin gene silencing. CONCLUSIONS: Our data describe a novel pathway for PECAM-1 regulation and broaden the functional scope of ferlins in angiogenesis and specialized ferlin-selective protein cargo trafficking in vascular settings.


Assuntos
Adesão Celular/fisiologia , Células Endoteliais/fisiologia , Proteínas de Membrana/fisiologia , Proteínas Musculares/fisiologia , Neovascularização Patológica/fisiopatologia , Animais , Bovinos , Proliferação de Células , Células Cultivadas , Regulação para Baixo , Disferlina , Humanos , Proteínas de Membrana/biossíntese , Camundongos , Proteínas Musculares/biossíntese , Molécula-1 de Adesão Celular Endotelial a Plaquetas/fisiologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/fisiologia
5.
Mutat Res ; 654(2): 108-13, 2008 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-18606566

RESUMO

The Syrian hamster embryo (SHE) cell transformation assay has traditionally been conducted with a feeder layer of X-ray irradiated cells to provide growth support to the target cells seeded in low numbers. The feeder layer of cells consists of X-ray irradiated cells which are still viable but unable to replicate. We have tried seeding the target cells in conditioned media prepared from the stock culture flasks in lieu of plating them on a feeder layer. Three SHE cell isolates were tested to investigate the feasibility of this approach. With freshly prepared conditioned medium (LeBoeuf's Dulbecco's Modified Eagle's Medium with 2 mM L-glutamine and 20% fetal bovine serum), used within 2 weeks of preparation, there was essentially no difference in the number of target cell colonies in the conditioned medium and in the plates with the X-ray irradiated feeder cell layer. The plating efficiencies of the vehicle controls were within the historical range for the standard SHE cell transformation assay. In each experiment, the positive control benzo(a)pyrene [B(a)P] elicited a significant increase in morphological transformation frequency (MTF), with or without feeder cells. Three compounds, 2,4-diaminotoluene (2,4-DAT), 2,6-diaminotoluene (2,6-DAT), and chloral hydrate were tested in the SHE cell transformation assay without an X-ray irradiated feeder layer and using a 7-day exposure regimen. The results were comparable to those reported in the published literature using the standard methodology with feeder cells, with 2,4-DAT and chloral hydrate eliciting a significant increase in MTF, and 2,6-DAT not eliciting any increase in MTF. The results of this study demonstrate the feasibility of conducting the SHE cell transformation assay without the use of an X-ray irradiated feeder layer, thereby simplifying the test procedure and facilitating the scoring of morphologically transformed colonies.


Assuntos
Testes de Carcinogenicidade/métodos , Técnicas de Cultura de Células/métodos , Transformação Celular Neoplásica , Hidrato de Cloral/farmacologia , Meios de Cultivo Condicionados , Fenilenodiaminas/farmacologia , Animais , Cricetinae , Embrião de Mamíferos/citologia , Mesocricetus , Raios X
6.
Artigo em Inglês | MEDLINE | ID: mdl-15795044

RESUMO

Spatial discriminations can be performed using either egocentric information based on body position or allocentric information based on the position of landmarks in the environment. Beagle dogs ranging from 2 to 16 years of age were tested for their ability to learn a novel egocentric spatial discrimination task that used two identical blocks paired in three possible spatial positions (i.e. left, center and right). Dogs were rewarded for responding to an object furthest to either their left or right side. Therefore, when the center location was used, it was correct on half of the trials and incorrect on the other half. Upon successful acquisition of the task, the reward contingencies were reversed, and the dogs were rewarded for responding to the opposite side. A subset of dogs was also tested on an allocentric spatial discrimination task, landmark discrimination. Egocentric spatial reversal learning and allocentric discrimination learning both showed a significant age-dependent decline, while initial egocentric learning appeared to be age-insensitive. Intra-subject correlation analyses revealed a significant relationship between egocentric reversal learning and allocentric learning. However, the correlation only accounted for a small proportion of the variance, suggesting that although there might be some common mechanism underlying acquisition of the two tasks, additional unique neural substrates were involved depending on whether allocentric or egocentric spatial information processing was required.


Assuntos
Envelhecimento/fisiologia , Aprendizagem por Discriminação/fisiologia , Rememoração Mental/fisiologia , Orientação/fisiologia , Comportamento Espacial/fisiologia , Análise de Variância , Animais , Comportamento Animal , Cães , Tempo de Reação/fisiologia , Análise de Regressão
7.
Diabetes ; 64(11): 3937-50, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26116699

RESUMO

Patients with diabetes have an increased risk of developing atherosclerosis. Endothelial dysfunction, characterized by the lowered bioavailability of endothelial NO synthase (eNOS)-derived NO, is a critical inducer of atherosclerosis. However, the protective aspect of eNOS in diabetes-associated atherosclerosis remains controversial, a likely consequence of its capacity to release both protective NO or deleterious oxygen radicals in normal and disease settings, respectively. Harnessing the atheroprotective activity of eNOS in diabetic settings remains elusive, in part due to the lack of endogenous eNOS-specific NO release activators. We have recently shown in vitro that eNOS-derived NO release can be increased by blocking its binding to Caveolin-1, the main coat protein of caveolae, using a highly specific peptide, CavNOxin. However, whether targeting eNOS using this peptide can attenuate diabetes-associated atherosclerosis is unknown. In this study, we show that CavNOxin can attenuate atherosclerotic burden by ∼84% in vivo. In contrast, mice lacking eNOS show resistance to CavNOxin treatment, indicating eNOS specificity. Mechanistically, CavNOxin lowered oxidative stress markers, inhibited the expression of proatherogenic mediators, and blocked leukocyte-endothelial interactions. These data are the first to show that endogenous eNOS activation can provide atheroprotection in diabetes and suggest that CavNOxin is a viable strategy for the development of antiatherosclerotic compounds.


Assuntos
Aterosclerose/metabolismo , Diabetes Mellitus Experimental/metabolismo , Angiopatias Diabéticas/metabolismo , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Animais , Cavéolas/metabolismo , Caveolina 1/metabolismo , Humanos , Masculino , Camundongos , Camundongos Knockout , Estresse Oxidativo/fisiologia , Transdução de Sinais/fisiologia
8.
PLoS One ; 7(7): e40478, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22808170

RESUMO

BACKGROUND: Normal airway epithelial barrier function is maintained by cell-cell contacts which require the translocation of adhesion proteins at the cell surface, through membrane vesicle trafficking and fusion events. Myoferlin and dysferlin, members of the multiple-C2-domain Ferlin superfamily, have been implicated in membrane fusion processes through the induction of membrane curvature. The objectives of this study were to examine the expression of dysferlin and myoferlin within the human airway and determine the roles of these proteins in airway epithelial homeostasis. METHODS: The expression of dysferlin and myoferlin were evaluated in normal human airway sections by immunohistochemistry, and primary human airway epithelial cells and fibroblasts by immuno blot. Localization of dysferlin and myoferlin in epithelial cells were determined using confocal microscopy. Functional outcomes analyzed included cell adhesion, protein expression, and cell detachment following dysferlin and myoferlin siRNA knock-down, using the human bronchial epithelial cell line, 16HBE. RESULTS: Primary human airway epithelial cells express both dysferlin and myoferlin whereas fibroblasts isolated from bronchi and the parenchyma only express myoferlin. Expression of dysferlin and myoferlin was further localized within the Golgi, cell cytoplasm and plasma membrane of 16HBE cells using confocal micrscopy. Treatment of 16HBE cells with myoferlin siRNA, but not dysferlin siRNA, resulted in a rounded cell morphology and loss of cell adhesion. This cell shedding following myoferlin knockdown was associated with decreased expression of tight junction molecule, zonula occludens-1 (ZO-1) and increased number of cells positive for apoptotic markers Annexin V and propidium iodide. Cell shedding was not associated with release of the innate inflammatory cytokines IL-6 and IL-8. CONCLUSIONS/SIGNIFICANCE: This study demonstrates the heterogeneous expression of myoferlin within epithelial cells and fibroblasts of the respiratory airway. The effect of myoferlin on the expression of ZO-1 in airway epithelial cells indicates its role in membrane fusion events that regulate cell detachment and apoptosis within the airway epithelium.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Musculares/metabolismo , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Proteína da Zônula de Oclusão-1/metabolismo , Animais , Proteínas de Ligação ao Cálcio/genética , Bovinos , Caveolina 1/metabolismo , Adesão Celular , Morte Celular , Linhagem Celular , Forma Celular/genética , Regulação para Baixo , Disferlina , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Técnicas de Silenciamento de Genes , Inativação Gênica , Humanos , Inflamação/genética , Inflamação/patologia , Proteínas de Membrana/genética , Proteínas Musculares/genética , Transporte Proteico , Junções Íntimas/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
9.
Vascul Pharmacol ; 55(1-3): 26-33, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21586340

RESUMO

Angiogenesis consists in the growth of new blood vessels from pre-existing ones. Although anti-angiogenesis interventions have been shown to have therapeutic properties in human diseases such as cancer, their effect is only partial and the identification of novel modulators of angiogenesis is warranted. Recently, we reported the unexpected proteomic identification in endothelial cells (EC) of Myoferlin, a member of the Ferlin family of transmembrane proteins. Ferlins are well known to regulate the fusion of lipid vesicles at the plasma membrane in muscle cells, and we showed that Myoferlin gene knockdown not only decreases lipid vesicle fusion in EC but also attenuates Vascular Endothelial Growth Factor (VEGF) Receptor-2 (VEGFR-2) expression. Herein, we show that Myoferlin gene silencing in cultured EC also results in attenuated expression of a second tyrosine kinase receptor, Tie-2, which is another well-described angiogenic receptor. Most importantly, we provide evidence that delivery of a low-volume Myoferlin siRNA preparation in mouse tissues results in attenuated angiogenesis and edema formation. This provides the first evidence that acute Myoferlin knockdown has anti-angiogenic effects and validates Myoferlin as an anti-angiogenesis target. Furthermore, this supports the unexpected but increasingly accepted concept that proper tyrosine kinase receptors expression at the plasma membrane requires Myoferlin.


Assuntos
Inativação Gênica , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Proteínas Musculares/biossíntese , Proteínas Musculares/genética , Receptor TIE-2/biossíntese , Receptor TIE-2/genética , Animais , Bovinos , Membrana Celular/genética , Membrana Celular/metabolismo , Células Cultivadas , Células Endoteliais/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Neovascularização Fisiológica/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Proto-Oncogênicas c-cbl/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA