Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 96(1): 18-22, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38134413

RESUMO

MALDI mass spectrometry imaging has gained major interest in the field of chemical imaging. This technique makes it possible to locate tens to hundreds of ionic signals on the sample surface without any a priori. One of the current challenges is still the limited ability to annotate signals in order to convert m/z values into probable chemical structures. At the same time, data obtained by LC-MS/MS have benefited from the development of numerous chemoinformatics tools, in particular molecular networks, for their efficient annotation. For the first time, we present here the combination of MALDI-FT-ICR imaging with molecular networks from MALDI-MS/MS data directly acquired on plant tissue sections. Annotation improvements are demonstrated, paving the way for new annotation pipelines for MALDI imaging.


Assuntos
Diagnóstico por Imagem , Espectrometria de Massas em Tandem , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Cromatografia Líquida/métodos , Metabolômica , Imagem Molecular
2.
Mar Drugs ; 22(5)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38786586

RESUMO

As a result of screening a panel of marine organisms to identify lead molecules for the stimulation of endochondral bone formation, the calcareous sponge Pericharax heteroraphis was identified to exhibit significant activity during endochondral differentiation. On further molecular networking analysis, dereplication and chemical fractionation yielded the known clathridine A-related metabolites 3-6 and the homodimeric complex (clathridine A)2 Zn2+ (9), together with the new unstable heterodimeric complex (clathridine A-clathridimine)Zn2+ (10). With the presence of the zinc complexes annotated through the LC-MS analysis of the crude extract changing due to the instability of some metabolites and complexes constituting the mixture, we combined the isolation of the predicted molecules with their synthesis in order to confirm their structure and to understand their reactivity. Interestingly, we also found a large quantity of the contaminant benzotriazoles BTZ (7) and its semi-dimer (BTZ)2CH2 (8), which are known to form complexes with transition metals and are used for preventing corrosion in water. All isolated 2-aminoimidazole derivatives and complexes were synthesized not only for structural confirmation and chemical understanding but to further study their bioactivity during endochondral differentiation, particularly the positively screened imidazolone derivatives. Compounds leucettamine B, clathridine A and clathridimine were found to increase type X collagen transcription and stimulate endochondral ossification in the ATDC5 micromass model.


Assuntos
Diferenciação Celular , Osteogênese , Poríferos , Animais , Poríferos/química , Osteogênese/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Organismos Aquáticos , Zinco/química
3.
J Nat Prod ; 83(10): 2915-2922, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-33021377

RESUMO

Fifty-seven entomopathogenic microorganisms were screened against human pathogens and subjected to mass spectrometry molecular networking based dereplication. Isaria farinosa BSNB-1250, shown to produce potentially novel biologically active metabolites, was grown on a large scale on potato dextrose agar, and paecilosetin (1) and five new analogues (2-6) were subsequently isolated. The structures of the new compounds were elucidated using 1D and 2D NMR. The absolute configurations of compounds 1-6 were determined using Mosher ester derivatives (1, 3, 4), comparison of experimental and calculated ECD spectra (2-4 and 6), and single-crystal X-ray diffraction analysis (5). Compounds 1 and 5 exhibited strong antibacterial activity against MSSA and MRSA with MIC values of 1-2 µg/mL.


Assuntos
Anti-Infecciosos/farmacologia , Cordyceps , Pirrolidinonas/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Paecilomyces
4.
J Fungi (Basel) ; 9(5)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37233247

RESUMO

Fomitiporia mediterranea M. Fischer (Fmed) is a white-rot wood-decaying fungus associated with one of the most important and challenging diseases in vineyards: Esca. To relieve microbial degradation, woody plants, including Vitis vinifera, use structural and chemical weapons. Lignin is the most recalcitrant of the wood cell wall structural compounds and contributes to wood durability. Extractives are constitutive or de novo synthesized specialized metabolites that are not covalently bound to wood cell walls and are often associated with antimicrobial properties. Fmed is able to mineralize lignin and detoxify toxic wood extractives, thanks to enzymes such as laccases and peroxidases. Grapevine wood's chemical composition could be involved in Fmed's adaptation to its substrate. This study aimed at deciphering if Fmed uses specific mechanisms to degrade grapevine wood structure and extractives. Three different wood species, grapevine, beech, and oak. were exposed to fungal degradation by two Fmed strains. The well-studied white-rot fungus Trametes versicolor (Tver) was used as a comparison model. A simultaneous degradation pattern was shown for Fmed in the three degraded wood species. Wood mass loss after 7 months for the two fungal species was the highest with low-density oak wood. For the latter wood species, radical differences in initial wood density were observed. No differences between grapevine or beech wood degradation rates were observed after degradation by Fmed or by Tver. Contrary to the Tver secretome, one manganese peroxidase isoform (MnP2l, jgi protein ID 145801) was the most abundant in the Fmed secretome on grapevine wood only. Non-targeted metabolomic analysis was conducted on wood and mycelium samples, using metabolomic networking and public databases (GNPS, MS-DIAL) for metabolite annotations. Chemical differences between non-degraded and degraded woods, and between mycelia grown on different wood species, are discussed. This study highlights Fmed physiological, proteomic and metabolomic traits during wood degradation and thus contributes to a better understanding of its wood degradation mechanisms.

5.
Front Cell Dev Biol ; 11: 1129009, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36968208

RESUMO

ATP wasting is recognized as an efficient strategy to enhance metabolic activity and productivity of specific metabolites in several microorganisms. However, such strategy has been rarely implemented in Streptomyces species whereas antibiotic production by members of this genus is known to be triggered in condition of phosphate limitation that is correlated with a low ATP content. In consequence, to assess the effects of ATP spilling on the primary and specialized metabolisms of Streptomyces, the gene encoding the small synthetic protein DX, that has high affinity for ATP and dephosphorylates ATP into ADP, was cloned in the integrative vector pOSV10 under the control of the strong ErmE promoter. This construct and the empty vector were introduced into the species Streptomyces albogriseolus/viridodiastaticus yielding A37 and A36, respectively. A37 yielded higher biomass than A36 indicating that the DX-mediated ATP degradation resulted into a stimulation of A37 metabolism, consistently with what was reported in other microorganisms. The comparative analysis of the metabolomes of A36 and A37 revealed that A37 had a lower content in glycolytic and Tricarboxylic Acid Cycle intermediates as well as in amino acids than A36, these metabolites being consumed for biomass generation in A37. In contrast, the abundance of other molecules indicative either of energetic stress (ADP, AMP, UMP, ornithine and thymine), of activation (NAD and threonic acid) or inhibition (citramalic acid, fatty acids, TAG and L-alanine) of the oxidative metabolism, was higher in A37 than in A36. Furthermore, hydroxyl-pyrimidine derivatives and polycyclic aromatic polyketide antibiotics belonging to the angucycline class and thought to have a negative impact on respiration were also more abundantly produced by A37 than by A36. This comparative analysis thus revealed the occurrence in A37 of antagonistic metabolic strategies, namely, activation or slowing down of oxidative metabolism and respiration, to maintain the cellular energetic balance. This study thus demonstrated that DX constitutes an efficient biotechnological tool to enhance the expression of the specialized metabolic pathways present in the Streptomyces genomes that may include cryptic pathways. Its use thus might lead to the discovery of novel bioactive molecules potentially useful to human health.

6.
Microorganisms ; 10(4)2022 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-35456880

RESUMO

During the last two decades, MALDI-ToF mass spectrometry has become an efficient and widely-used tool for identifying clinical isolates. However, its use for classification and identification of environmental microorganisms remains limited by the lack of reference spectra in current databases. In addition, the interpretation of the classical dendrogram-based data representation is more difficult when the quantity of taxa or chemotaxa is larger, which implies problems of reproducibility between users. Here, we propose a workflow including a concurrent standardized protein and lipid extraction protocol as well as an analysis methodology using the reliable spectra comparison algorithm available in MetGem software. We first validated our method by comparing protein fingerprints of highly pathogenic bacteria from the Robert Koch Institute (RKI) open database and then implemented protein fingerprints of environmental isolates from French Guiana. We then applied our workflow for the classification of a set of protein and lipid fingerprints from environmental microorganisms and compared our results to classical genetic identifications using 16S and ITS region sequencing for bacteria and fungi, respectively. We demonstrated that our protocol allowed general classification at the order and genus level for bacteria whereas only the Botryosphaeriales order can be finely classified for fungi.

7.
Plants (Basel) ; 9(1)2019 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-31905762

RESUMO

The emergence of multidrug resistant bacterial pathogens and the increase of antimicrobial resistance constitutes a major health challenge, leading to intense research efforts being focused on the discovery of novel antimicrobial compounds. In this study, endophytes were isolated from different parts of Sandwithia guyanensis plant (leaves, wood and latex) belonging to the Euphorbiaceae family and known to produce antimicrobial compounds, and chemically characterised using Molecular Network in order to discover novel antimicrobial molecules. One fungal endophyte extract obtained from S. guyanensis latex showed significant antimicrobial activity with Minimal Inhibitory Concentration on methicillin-resistant Staphylococcus aureus at 16 µg/mL. The chemical investigation of this fungus (Lecanicillium genus) extract led to the isolation of 5 stephensiolides compounds, four of which demonstrated antibacterial activity. Stephensiolide I and G showed the highest antibacterial activity on MRSA with a MIC at 4 and 16 µg/mL respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA