Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Bioelectromagnetics ; 45(3): 110-129, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38115173

RESUMO

Whether human cells are impacted by environmental electromagnetic fields (EMF) is still a matter of debate. With the deployment of the fifth generation (5G) of mobile communication technologies, the carrier frequency is increasing and the human skin becomes the main biological target. Here, we evaluated the impact of 5G-modulated 3.5 GHz radiofrequency (RF) EMF on mitochondrial stress in human fibroblasts and keratinocytes that were exposed for 24 h at specific absorption rate of 0.25, 1, and 4 W/kg. We assessed cell viability, mitochondrial reactive oxygen species (ROS) production, and membrane polarization. Knowing that human skin is the main target of environmental ultraviolet (UV), using the same read-out, we investigated whether subsequent exposure to 5G signal could alter the capacity of UV-B to damage skin cells. We found a statistically significant reduction in mitochondrial ROS concentration in fibroblasts exposed to 5G signal at 1 W/kg. On the contrary, the RF exposure slightly but statistically significantly enhanced the effects of UV-B radiation specifically in keratinocytes at 0.25 and 1 W/kg. No effect was found on mitochondrial membrane potential or apoptosis in any cell types or exposure conditions suggesting that the type and amplitude of the observed effects are very punctual.


Assuntos
Pele , Raios Ultravioleta , Humanos , Espécies Reativas de Oxigênio/metabolismo , Raios Ultravioleta/efeitos adversos , Pele/metabolismo , Ondas de Rádio/efeitos adversos , Queratinócitos/metabolismo , Campos Eletromagnéticos
2.
Int J Mol Sci ; 24(19)2023 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-37834447

RESUMO

Cellular response upon nsPEF exposure depends on different parameters, such as pulse number and duration, the intensity of the electric field, pulse repetition rate (PRR), pulsing buffer composition, absorbed energy, and local temperature increase. Therefore, a deep insight into the impact of such parameters on cellular response is paramount to adaptively optimize nsPEF treatment. Herein, we examined the effects of nsPEF ≤ 10 ns on long-term cellular viability and growth as a function of pulse duration (2-10 ns), PRR (20 and 200 Hz), cumulative time duration (1-5 µs), and absorbed electrical energy density (up to 81 mJ/mm3 in sucrose-containing low-conductivity buffer and up to 700 mJ/mm3 in high-conductivity HBSS buffer). Our results show that the effectiveness of nsPEFs in ablating 3D-grown cancer cells depends on the medium to which the cells are exposed and the PRR. When a medium with low-conductivity is used, the pulses do not result in cell ablation. Conversely, when the same pulse parameters are applied in a high-conductivity HBSS buffer and high PRRs are applied, the local temperature rises and yields either cell sensitization to nsPEFs or thermal damage.


Assuntos
Neoplasias , Esferoides Celulares , Humanos , Temperatura , Eletricidade
3.
Bioelectromagnetics ; 43(4): 257-267, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35485721

RESUMO

This study aims to analyze in real-time the potential modifications induced by low-level continuous-wave and Global System for Mobile Communications radiofrequency (RF) exposure at 1.8 GHz on brain activation in anesthetized mice. A specific in vivo experimental setup consisting of a dipole antenna for the local exposure of the brain was fully characterized. A unique neuroimaging technique based on a functional ultrasound (fUS) probe was used to observe the areas of mice brain activation simultaneously to the RF exposure with unprecedented spatial and temporal resolution (~100 µm, 1 ms) following manual whisker stimulation using a brush. Numerical and experimental dosimetry was carried out to characterize the exposure and to guarantee the validity of the biological results. Our results show that the fUS probe can be efficiently used during in vivo exposure without interference with the dipole. In addition, we conclude that exposure to brain-averaged specific absorption rate levels of 2 and 6 W/kg does not introduce significant changes in the time course of the evoked fUS response in the left barrel field cortex. The proposed technique represents a valuable instrument for providing new insights into the possible effects induced on brain activation under RF exposure. For the first time, brain activity under mobile phone exposure was evaluated in vivo with fUS imaging, paving the way for more realistic exposure configurations, i.e. awake mice and new signals such as the 5 G networks. © 2022 Bioelectromagnetics Society.


Assuntos
Telefone Celular , Ondas de Rádio , Animais , Encéfalo/diagnóstico por imagem , Camundongos , Radiometria
4.
Int J Mol Sci ; 23(2)2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-35054844

RESUMO

It remains controversial whether exposure to environmental radiofrequency signals (RF) impacts cell status or response to cellular stress such as apoptosis or autophagy. We used two label-free techniques, cellular impedancemetry and Digital Holographic Microscopy (DHM), to assess the overall cellular response during RF exposure alone, or during co-exposure to RF and chemical treatments known to induce either apoptosis or autophagy. Two human cell lines (SH-SY5Y and HCT116) and two cultures of primary rat cortex cells (astrocytes and co-culture of neurons and glial cells) were exposed to RF using an 1800 MHz carrier wave modulated with various environmental signals (GSM: Global System for Mobile Communications, 2G signal), UMTS (Universal Mobile Telecommunications System, 3G signal), LTE (Long-Term Evolution, 4G signal, and Wi-Fi) or unmodulated RF (continuous wave, CW). The specific absorption rates (S.A.R.) used were 1.5 and 6 W/kg during DHM experiments and ranged from 5 to 24 W/kg during the recording of cellular impedance. Cells were continuously exposed for three to five consecutive days while the temporal phenotypic signature of cells behavior was recorded at constant temperature. Statistical analysis of the results does not indicate that RF-EMF exposure impacted the global behavior of healthy, apoptotic, or autophagic cells, even at S.A.R. levels higher than the guidelines, provided that the temperature was kept constant.


Assuntos
Apoptose , Autofagia , Ondas de Rádio , Coloração e Rotulagem , Trióxido de Arsênio/farmacologia , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Meios de Cultura Livres de Soro , Impedância Elétrica , Holografia , Humanos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fatores de Tempo
5.
Magn Reson Med ; 79(6): 3267-3273, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-28983954

RESUMO

PURPOSE: To investigate the value of electron paramagnetic resonance oximetry to follow oxygenation in wounds treated by a plasmid-encoding host defense peptide hCAP-18/LL37. METHODS: Flaps were created on diabetic mice (7- or 12-week-old db/db mice) presenting different levels of microangiopathy. The hCAP-18/LL37-encoding plasmids were administered in wounds by electroporation. Low-frequency electron paramagnetic resonance oximetry using lithium phthalocyanine as the oxygen sensor was used to monitor wound oxygenation in flaps during the healing process. Flaps were analyzed by immunohistochemistry to assess hypoxia and cell proliferation. Kinetics of closure was also assessed in excisional skin wounds. RESULTS: A reoxygenation of the flap was observed during the healing process in the 7-week-old db/db treated mice, but not in the untreated mice and the 12-week-old mice. Histological studies demonstrated less hypoxic regions and higher proportion of proliferating cells in hCAP-18/LL37-treated flaps in the 7-week-old db/db treated mice compared with untreated mice. Consistently, the kinetics of excisional wound closure was improved by hCAP-18/LL37 treatment in the 7-week-old db/db but not in the 12-week-old mice. CONCLUSIONS: Oxygenation measured by electron paramagnetic resonance oximetry is a promising biomarker of response to treatments designed to modulate wound oxygenation. Magn Reson Med 79:3267-3273, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Peptídeos Catiônicos Antimicrobianos/genética , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Terapia Genética , Oximetria/métodos , Oxigênio/sangue , Cicatrização/fisiologia , Animais , Biomarcadores/análise , Diabetes Mellitus Experimental , Masculino , Camundongos , Oxigênio/metabolismo , Catelicidinas
6.
Biochim Biophys Acta Biomembr ; 1859(10): 2040-2050, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28693898

RESUMO

Nanosecond pulsed electric fields (nsPEFs) have a variety of applications in the biomedical and biotechnology industries. Cancer treatment has been at the forefront of investigations thus far as nsPEFs permeabilize cellular and intracellular membranes leading to apoptosis and necrosis. nsPEFs may also influence ion channel gating and have the potential to modulate cell physiology without poration of the membrane. This phenomenon was explored using live cell imaging and a sensitive fluorescent probe of transmembrane voltage in the human glioblastoma cell line, U87 MG, known to express a number of voltage-gated ion channels. The specific ion channels involved in the nsPEF response were screened using a membrane potential imaging approach and a combination of pharmacological antagonists and ion substitutions. It was found that a single 10ns pulsed electric field of 34kV/cm depolarizes the transmembrane potential of cells by acting on specific voltage-sensitive ion channels; namely the voltage and Ca2+ gated BK potassium channel, L- and T-type calcium channels, and the TRPM8 transient receptor potential channel.


Assuntos
Canais de Cálcio Tipo T/metabolismo , Glioblastoma/metabolismo , Glioblastoma/fisiopatologia , Ativação do Canal Iônico/fisiologia , Potenciais da Membrana/fisiologia , Canais de Potássio/metabolismo , Canais de Cátion TRPM/metabolismo , Apoptose/fisiologia , Cálcio/metabolismo , Linhagem Celular Tumoral , Eletricidade , Humanos , Necrose/metabolismo , Necrose/patologia , Potássio/metabolismo
7.
Magn Reson Med ; 77(6): 2438-2443, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27364733

RESUMO

PURPOSE: The ability to assess the extracellular pH (pHe) is an important issue in oncology, because extracellular acidification is associated with tumor aggressiveness and resistance to cytotoxic therapies. In this study, a stable triphosphonated triarylmethyl (TPTAM) radical was qualified as a pHe electron paramagnetic resonance (EPR) molecular reporter. METHODS: Calibration of hyperfine splitting as a function of pH was performed using a 1.2-GHz EPR spectrometer. Gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA) was used as an extracellular paramagnetic broadening agent to assess the localization of TPTAM when incubated with cells. In vivo EPR pH-metry was performed in MDA, SiHa, and TLT tumor models and in muscle. Bicarbonate therapy was used to modulate the tumor pHe. EPR measurements were compared with microelectrode readouts. RESULTS: The hyperfine splitting of TPTAM was strongly pH-dependent around the pKa of the probe (pKa = 6.99). Experiments with Gd-DTPA demonstrated that TPTAM remained in the extracellular compartment. pHe was found to be more acidic in the MDA, SiHa, and TLT tumor models compared with muscle. Treatment of animals by bicarbonate induced an increase in pHe in tumors: similar variations in pHe were found when using in vivo EPR or invasive microelectrodes measurements. CONCLUSION: This study demonstrates the potential usefulness of TPTAM for monitoring pHe in tumors. Magn Reson Med 77:2438-2443, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Radicais Livres/química , Concentração de Íons de Hidrogênio , Técnicas de Sonda Molecular , Sondas Moleculares/química , Neoplasias Experimentais/química , Neoplasias Experimentais/diagnóstico , Algoritmos , Animais , Humanos , Células K562 , Masculino , Camundongos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
8.
NMR Biomed ; 28(3): 367-75, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25611487

RESUMO

Cell tracking could be useful to elucidate fundamental processes of cancer biology such as metastasis. The aim of this study was to visualize, using MRI, and to quantify, using electron paramagnetic resonance (EPR), the entrapment of murine breast cancer cells labeled with superparamagnetic iron oxide particles (SPIOs) in the mouse brain after intracardiac injection. For this purpose, luciferase-expressing murine 4 T1-luc breast cancer cells were labeled with fluorescent Molday ION Rhodamine B SPIOs. Following intracardiac injection, SPIO-labeled 4 T1-luc cells were imaged using multiple gradient-echo sequences. Ex vivo iron oxide quantification in the mouse brain was performed using EPR (9 GHz). The long-term fate of 4 T1-luc cells after injection was characterized using bioluminescence imaging (BLI), brain MRI and immunofluorescence. We observed hypointense spots due to SPIO-labeled cells in the mouse brain 4 h after injection on T2 *-weighted images. Histology studies showed that SPIO-labeled cancer cells were localized within blood vessels shortly after delivery. Ex vivo quantification of SPIOs showed that less than 1% of the injected cells were taken up by the mouse brain after injection. MRI experiments did not reveal the development of macrometastases in the mouse brain several days after injection, but immunofluorescence studies demonstrated that these cells found in the brain established micrometastases. Concerning the metastatic patterns of 4 T1-luc cells, an EPR biodistribution study demonstrated that SPIO-labeled 4 T1-luc cells were also entrapped in the lungs of mice after intracardiac injection. BLI performed 6 days after injection of 4 T1-luc cells showed that this cell line formed macrometastases in the lungs and in the bones. Conclusively, EPR and MRI were found to be complementary for cell tracking applications. MRI cell tracking at 11.7 T allowed sensitive detection of isolated SPIO-labeled cells in the mouse brain, whereas EPR allowed the assessment of the number of SPIO-labeled cells in organs shortly after injection.


Assuntos
Encéfalo/patologia , Rastreamento de Células/métodos , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Imageamento por Ressonância Magnética/métodos , Neoplasias Mamárias Animais/patologia , Animais , Linhagem Celular Tumoral , Dextranos/metabolismo , Feminino , Injeções , Medições Luminescentes , Pulmão/metabolismo , Nanopartículas de Magnetita , Camundongos Endogâmicos BALB C , Miocárdio/metabolismo , Especificidade de Órgãos , Rodaminas/metabolismo , Coloração e Rotulagem , Fatores de Tempo , Distribuição Tecidual
9.
Appl Environ Microbiol ; 80(16): 4832-41, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24907330

RESUMO

The aim of this study was to investigate the effects on the cell membranes of Escherichia coli of 2.45-GHz microwave (MW) treatment under various conditions with an average temperature of the cell suspension maintained at 37°C in order to examine the possible thermal versus nonthermal effects of short-duration MW exposure. To this purpose, microwave irradiation of bacteria was performed under carefully defined and controlled parameters, resulting in a discontinuous MW exposure in order to maintain the average temperature of the bacterial cell suspensions at 37°C. Escherichia coli cells were exposed to 200- to 2,000-W discontinuous microwave (DW) treatments for different periods of time. For each experiment, conventional heating (CH) in a water bath at 37°C was performed as a control. The effects of DW exposure on cell membranes was investigated using flow cytometry (FCM), after propidium iodide (PI) staining of cells, in addition to the assessment of intracellular protein release in bacterial suspensions. No effect was detected when bacteria were exposed to conventional heating or 200 W, whereas cell membrane integrity was slightly altered when cell suspensions were subjected to powers ranging from 400 to 2,000 W. Thermal characterization suggested that the temperature reached by the microwave-exposed samples for the contact time studied was not high enough to explain the measured modifications of cell membrane integrity. Because the results indicated that the cell response is power dependent, the hypothesis of a specific electromagnetic threshold effect, probably related to the temperature increase, can be advanced.


Assuntos
Membrana Celular/efeitos da radiação , Escherichia coli/efeitos da radiação , Membrana Celular/química , Escherichia coli/citologia , Temperatura Alta , Micro-Ondas
10.
Radiat Environ Biophys ; 53(2): 311-20, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24671362

RESUMO

This paper presents the results of an interlaboratory comparison of retrospective dosimetry using the electron paramagnetic resonance method. The test material used in this exercise was glass coming from the touch screens of smart phones that might be used as fortuitous dosimeters in a large-scale radiological incident. There were 13 participants to whom samples were dispatched, and 11 laboratories reported results. The participants received five calibration samples (0, 0.8, 2, 4, and 10 Gy) and four blindly irradiated samples (0, 0.9, 1.3, and 3.3 Gy). Participants were divided into two groups: for group A (formed by three participants), samples came from a homogeneous batch of glass and were stored in similar setting; for group B (formed by eight participants), samples came from different smart phones and stored in different settings of light and temperature. The calibration curves determined by the participants of group A had a small error and a critical level in the 0.37-0.40-Gy dose range, whereas the curves determined by the participants of group B were more scattered and led to a critical level in the 1.3-3.2-Gy dose range for six participants out of eight. Group A were able to assess the dose within 20 % for the lowest doses (<1.5 Gy) and within 5 % for the highest doses. For group B, only the highest blind dose could be evaluated in a reliable way because of the high critical values involved. The results from group A are encouraging, whereas the results from group B suggest that the influence of environmental conditions and the intervariability of samples coming from different smart phones need to be further investigated. An alongside conclusion is that the protocol was easily transferred to participants making a network of laboratories in case of a mass casualty event potentially feasible.


Assuntos
Telefone Celular , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Vidro , Radiometria/métodos , Calibragem , Humanos , Estatística como Assunto
11.
Bioelectromagnetics ; 34(1): 52-60, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22767080

RESUMO

The potential effects of radiofrequency (RF) exposure on the genetic material of cells are very important to determine since genome instability of somatic cells may be linked to cancer development. In response to genetic damage, the p53 protein is activated and can induce cell cycle arrest allowing more time for DNA repair or elimination of damaged cells through apoptosis. The objective of this study was to investigate whether the exposure to RF electromagnetic fields, similar to those emitted by mobile phones of the second generation standard, Global System for Mobile Communications (GSM), may induce expression of the p53 protein and its activation by post-translational modifications in cultured human cells. The potential induction of p53 expression and activation by GSM-900 was investigated after in vitro exposure of human amniotic cells for 24 h to average specific absorption rates (SARs) of 0.25, 1, 2, and 4 W/kg in the temperature range of 36.3-39.7 °C. The exposures were carried out using a wire-patch cell (WPC) under strictly controlled conditions of temperature. Expression and activation of p53 by phosphorylation at serine 15 and 37 were studied using Western blot assay immediately after three independent exposures of cell cultures provided from three different donors. Bleomycin-exposed cells were used as a positive control. According to our results, no significant changes in the expression and activation of the p53 protein by phosphorylation at serine 15 and 37 were found following exposure to GSM-900 for 24 h at average SARs up to 4 W/kg in human embryonic cells.


Assuntos
Amniocentese , Telefone Celular , Fibroblastos/efeitos da radiação , Regulação da Expressão Gênica/efeitos da radiação , Processamento de Proteína Pós-Traducional/efeitos da radiação , Ondas de Rádio/efeitos adversos , Proteína Supressora de Tumor p53/metabolismo , Absorção/efeitos da radiação , Dano ao DNA , Fibroblastos/citologia , Humanos
12.
Bioelectromagnetics ; 34(8): 571-8, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23913345

RESUMO

The central nervous system is the most likely target of mobile telephony radiofrequency (RF) field exposure in terms of biological effects. Several electroencephalography (EEG) studies have reported variations in the alpha-band power spectrum during and/or after RF exposure, in resting EEG and during sleep. In this context, the observation of the spontaneous electrical activity of neuronal networks under RF exposure can be an efficient tool to detect the occurrence of low-level RF effects on the nervous system. Our research group has developed a dedicated experimental setup in the GHz range for the simultaneous exposure of neuronal networks and monitoring of electrical activity. A transverse electromagnetic (TEM) cell was used to expose the neuronal networks to GSM-1800 signals at a SAR level of 3.2 W/kg. Recording of the neuronal electrical activity and detection of the extracellular spikes and bursts under exposure were performed using microelectrode arrays (MEAs). This work provides the proof of feasibility and preliminary results of the integrated investigation regarding exposure setup, culture of the neuronal network, recording of the electrical activity, and analysis of the signals obtained under RF exposure. In this pilot study on 16 cultures, there was a 30% reversible decrease in firing rate (FR) and bursting rate (BR) during a 3 min exposure to RF. Additional experiments are needed to further characterize this effect.


Assuntos
Telefone Celular , Rede Nervosa/citologia , Rede Nervosa/efeitos da radiação , Neurônios/citologia , Neurônios/efeitos da radiação , Ondas de Rádio/efeitos adversos , Animais , Córtex Cerebral/citologia , Projetos Piloto , Radiometria , Ratos , Ratos Sprague-Dawley
13.
Artigo em Inglês | MEDLINE | ID: mdl-37754652

RESUMO

Following the recent deployment of fifth-generation (5G) radio frequencies, several questions about their health impacts have been raised. Due to the lack of experimental research on this subject, the current study aimed to investigate the bio-physiological effects of a generated 3.5 GHz frequency. For this purpose, the wake electroencephalograms (EEG) of 34 healthy volunteers were explored during two "real" and "sham" exposure sessions. The electromagnetic fields were antenna-emitted in an electrically shielded room and had an electrical field root-mean-square intensity of 2 V/m, corresponding to the current outdoor exposure levels. The sessions were a maximum of one week apart, and both contained an exposure period of approximately 26 min and were followed by a post-exposure period of 17 min. The power spectral densities (PSDs) of the beta, alpha, theta, and delta bands were then computed and corrected based on an EEG baseline period. This was acquired for 17 min before the subsequent phases were recorded under two separate conditions: eyes open (EO) and eyes closed (EC). A statistical analysis showed an overall non-significant change in the studied brain waves, except for a few electrodes in the alpha, theta, and delta spectra. This change was translated into an increase or decrease in the PSDs, in response to the EO and EC conditions. In conclusion, this studhy showed that 3.5 GHz exposure, within the regulatory levels and exposure parameters used in this protocol, did not affect brain activity in healthy young adults. Moreover, to our knowledge, this was the first laboratory-controlled human EEG study on 5G effects. It attempted to address society's current concern about the impact of 5G exposure on human health at environmental levels.


Assuntos
Eletricidade , Eletroencefalografia , Adulto Jovem , Humanos , Voluntários Saudáveis , Eletrodos , Encéfalo
14.
Front Public Health ; 11: 1231360, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37608978

RESUMO

Introduction: The current deployment of the fifth generation (5G) of wireless communications raises new questions about the potential health effects of exposure to radiofrequency (RF) fields. So far, most of the established biological effects of RF have been known to be caused by heating. We previously reported inhibition of the spontaneous electrical activity of neuronal networks in vitro when exposed to 1.8 GHz signals at specific absorption rates (SAR) well above the guidelines. The present study aimed to assess the effects of RF fields at 3.5 GHz, one of the frequencies related to 5G, on neuronal activity in-vitro. Potential differences in the effects elicited by continuous-wave (CW) and 5G-modulated signals were also investigated. Methods: Spontaneous activity of neuronal cultures from embryonic cortices was recorded using 60-electrode multi-electrode arrays (MEAs) between 17 and 27 days in vitro. The neuronal cultures were subjected to 15 min RF exposures at SAR of 1, 3, and 28 W/kg. Results: At SAR close to the guidelines (1 and 3 W/kg), we found no conclusive evidence that 3.5 GHz RF exposure impacts the activity of neurons in vitro. On the contrary, CW and 5G-modulated signals elicited a clear decrease in bursting and total firing rates during RF exposure at high SAR levels (28 W/kg). Our experimental findings extend our previous results, showing that RF, at 1.8 to 3.5 GHz, inhibits the electrical activity of neurons in vitro at levels above environmental standards.


Assuntos
Calefação , Neurônios
15.
Sci Rep ; 13(1): 8305, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37221363

RESUMO

The potential health risks of exposure to radiofrequency electromagnetic fields from mobile communications technologies have raised societal concerns. Guidelines have been set to protect the population (e.g. non-specific heating above 1 °C under exposure to radiofrequency fields), but questions remain regarding the potential biological effects of non-thermal exposures. With the advent of the fifth generation (5G) of mobile communication, assessing whether exposure to this new signal induces a cellular stress response is one of the mandatory steps on the roadmap for a safe deployment and health risk evaluation. Using the BRET (Bioluminescence Resonance Energy-Transfer) technique, we assessed whether continuous or intermittent (5 min ON/ 10 min OFF) exposure of live human keratinocytes and fibroblasts cells to 5G 3.5 GHz signals at specific absorption rate (SAR) up to 4 W/kg for 24 h impact basal or chemically-induced activity of Heat Shock Factor (HSF), RAt Sarcoma virus (RAS) and Extracellular signal-Regulated Kinases (ERK) kinases, and Promyelocytic Leukemia Protein (PML), that are all molecular pathways involved in environmental cell-stress responses. The main results are (i), a decrease of the HSF1 basal BRET signal when fibroblasts cells were exposed at the lower SARs tested (0.25 and 1 W/kg), but not at the highest one (4 W/kg), and (ii) a slight decrease of As2O3 maximal efficacy to trigger PML SUMOylation when fibroblasts cells, but not keratinocytes, were continuously exposed to the 5G RF-EMF signal. Nevertheless, given the inconsistency of these effects in terms of impacted cell type, effective SAR, exposure mode, and molecular cell stress response, we concluded that our study show no conclusive evidence that molecular effects can arise when skin cells are exposed to the 5G RF-EMF alone or with a chemical stressor.


Assuntos
Campos Eletromagnéticos , MAP Quinases Reguladas por Sinal Extracelular , Fibroblastos , Queratinócitos , Humanos , Campos Eletromagnéticos/efeitos adversos
16.
Opt Express ; 20(28): 29705-16, 2012 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-23388798

RESUMO

In this paper, we describe and investigate the properties of a broadband source designed from a nanosecond microchip laser operating at high repetition rate and dedicated to multiplex-CARS application. We demonstrate that a strong reshaping of the initial pulse profile drastically affects the Stokes wave and therefore represents an important limitation in CARS experiment. In particular, we emphasize the saturation effect of the peak power of the Stokes wave resulting from supercontinuum generation. However, we show that this type of compact system can be particularly suitable for achieving CARS measurement.

17.
Exp Dermatol ; 21(5): 341-6, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22509830

RESUMO

Malignant melanoma is a tumor characterized by the uncontrolled proliferation of melanocytes, mainly in skin, but also in eyes. Its incidence is rising each year. To improve the diagnosis and treatment of the tumor, it is essential to develop new effective methods to early detect and characterize melanoma. Previously, we demonstrated in a single-shot study that it was possible to map free radicals of melanin pigments using an electron paramagnetic resonance (EPR)-based method. Furthermore, we demonstrated that X-Band (9 GHz) EPR spectrometry was an accurate tool to assess the growth stage of a pigmented tumor. The aim of the present study was to investigate the ability of EPR imaging to detect and localize melanin pigments inside melanin phantoms, B16 melanoma tumor models and resected human melanomas. We show that EPR can provide an accurate image of synthetic samples, both in terms of shape and size, with errors always lower than 10% compared to the real size. Regarding melanoma studies, the ability of EPR imaging to map accurately the melanoma was depending on the concentration of melanin in the sample, which is proportional to the growth stage of the tumor and the consequent signal-to-noise ratio (SNR) provided by the EPR signal intensity. This led us to define an operational concept, considering SNR and interferences with other EPR signals, to determine when EPR imaging was feasible.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Melanoma/patologia , Neoplasias Cutâneas/patologia , Animais , Linhagem Celular , Modelos Animais de Doenças , Radicais Livres/metabolismo , Humanos , Masculino , Melaninas/metabolismo , Melanoma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Invasividade Neoplásica , Estadiamento de Neoplasias , Sensibilidade e Especificidade , Neoplasias Cutâneas/metabolismo
18.
Sci Rep ; 12(1): 4063, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35260711

RESUMO

Increased needs for mobile phone communications have raised successive generations (G) of wireless technologies, which could differentially affect biological systems. To test this, we exposed rats to single head-only exposure of a 4G long-term evolution (LTE)-1800 MHz electromagnetic field (EMF) for 2 h. We then assessed the impact on microglial space coverage and electrophysiological neuronal activity in the primary auditory cortex (ACx), under acute neuroinflammation induced by lipopolysaccharide. The mean specific absorption rate in the ACx was 0.5 W/kg. Multiunit recording revealed that LTE-EMF triggered reduction in the response strength to pure tones and to natural vocalizations, together with an increase in acoustic threshold in the low and medium frequencies. Iba1 immunohistochemistry showed no change in the area covered by microglia cell bodies and processes. In healthy rats, the same LTE-exposure induced no change in response strength and acoustic threshold. Our data indicate that acute neuroinflammation sensitizes neuronal responses to LTE-EMF, which leads to an altered processing of acoustic stimuli in the ACx.


Assuntos
Córtex Auditivo , Telefone Celular , Acústica , Animais , Campos Eletromagnéticos , Neurônios , Ratos
19.
PLoS One ; 17(8): e0268605, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36044461

RESUMO

Previous studies have shown that spontaneously active cultured networks of cortical neuron grown planar microelectrode arrays are sensitive to radiofrequency (RF) fields and exhibit an inhibitory response more pronounced as the exposure time and power increase. To better understand the mechanism behind the observed effects, we aimed at identifying similarities and differences between the inhibitory effect of RF fields (continuous wave, 1800 MHz) to the γ-aminobutyric acid type A (GABAA) receptor agonist muscimol (MU). Inhibition of the network bursting activity in response to RF exposure became apparent at an SAR level of 28.6 W/kg and co-occurred with an elevation of the culture medium temperature of ~1°C. Exposure to RF fields preferentially inhibits bursting over spiking activity and exerts fewer constraints on neural network bursting synchrony, differentiating it from a pharmacological inhibition with MU. Network rebound excitation, a phenomenon relying on the intrinsic properties of cortical neurons, was observed following the removal of tonic hyperpolarization after washout of MU but not in response to cessation of RF exposure. This implies that hyperpolarization is not the main driving force mediating the inhibitory effects of RF fields. At the level of single neurons, network inhibition induced by MU and RF fields occurred with reduced action potential (AP) half-width. As changes in AP waveform strongly influence efficacy of synaptic transmission, the narrowing effect on AP seen under RF exposure might contribute to reducing network bursting activity. By pointing only to a partial overlap between the inhibitory hallmarks of these two forms of inhibition, our data suggest that the inhibitory mechanisms of the action of RF fields differ from the ones mediated by the activation of GABAA receptors.


Assuntos
Neurônios , Transmissão Sináptica , Potenciais de Ação/fisiologia , Muscimol/farmacologia , Neurônios/fisiologia , Ondas de Rádio , Transmissão Sináptica/fisiologia
20.
Invest New Drugs ; 29(5): 891-900, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20454833

RESUMO

Numerous studies suggest that generation of oxidative stress could be useful in cancer treatment. In this study, we evaluated, in vitro and in vivo, the antitumor potential of oxidative stress induced by ascorbate/menadione (asc/men). This combination of a reducing agent (ascorbate) and a redox active quinone (menadione) generates redox cycling leading to formation of reactive oxygen species (ROS). Asc/men was tested in several cell types including K562 cells (a stable human-derived leukemia cell line), freshly isolated leukocytes from patients with chronic myeloid leukemia, BaF3 cells (a murine pro-B cell line) transfected with Bcr-Abl and peripheral blood leukocytes derived from healthy donors. Although these latter cells were resistant to asc/men, survival of all the other cell lines was markedly reduced, including the BaF3 cells expressing either wild-type or mutated Bcr-Abl. In a standard in vivo model of subcutaneous tumor transplantation, asc/men provoked a significant delay in the proliferation of K562 and BaF3 cells expressing the T315I mutated form of Bcr-Abl. No effect of asc/men was observed when these latter cells were injected into blood of mice most probably because of the high antioxidant potential of red blood cells, as shown by in vitro experiments. We postulate that cancer cells are more sensitive to asc/men than healthy cells because of their lack of antioxidant enzymes, mainly catalase. The mechanism underlying this cytotoxicity involves the oxidative cleavage of Hsp90 with a subsequent loss of its chaperone function thus leading to degradation of wild-type and mutated Bcr-Abl protein.


Assuntos
Ácido Ascórbico/farmacologia , Proteínas de Fusão bcr-abl/metabolismo , Proteínas Mutantes/metabolismo , Neoplasias/patologia , Estresse Oxidativo/efeitos dos fármacos , Vitamina K 3/farmacologia , Animais , Ácido Ascórbico/química , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Citoproteção/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/farmacologia , Células K562 , Camundongos , Camundongos Nus , Neoplasias/metabolismo , Vitamina K 3/química , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA