Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Cell ; 182(5): 1170-1185.e9, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32795412

RESUMO

Loss of the gene (Fmr1) encoding Fragile X mental retardation protein (FMRP) causes increased mRNA translation and aberrant synaptic development. We find neurons of the Fmr1-/y mouse have a mitochondrial inner membrane leak contributing to a "leak metabolism." In human Fragile X syndrome (FXS) fibroblasts and in Fmr1-/y mouse neurons, closure of the ATP synthase leak channel by mild depletion of its c-subunit or pharmacological inhibition normalizes stimulus-induced and constitutive mRNA translation rate, decreases lactate and key glycolytic and tricarboxylic acid (TCA) cycle enzyme levels, and triggers synapse maturation. FMRP regulates leak closure in wild-type (WT), but not FX synapses, by stimulus-dependent ATP synthase ß subunit translation; this increases the ratio of ATP synthase enzyme to its c-subunit, enhancing ATP production efficiency and synaptic growth. In contrast, in FXS, inability to close developmental c-subunit leak prevents stimulus-dependent synaptic maturation. Therefore, ATP synthase c-subunit leak closure encourages development and attenuates autistic behaviors.


Assuntos
Trifosfato de Adenosina/metabolismo , Síndrome do Cromossomo X Frágil/metabolismo , Subunidades Proteicas/metabolismo , Animais , Linhagem Celular , Ciclo do Ácido Cítrico/fisiologia , Fibroblastos/metabolismo , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Células HEK293 , Humanos , Camundongos , Neurônios/metabolismo , RNA Mensageiro , Sinapses/metabolismo
2.
FASEB J ; 38(4): e23494, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38376922

RESUMO

Pathological opening of the mitochondrial permeability transition pore (mPTP) is implicated in the pathogenesis of many disease processes such as myocardial ischemia, traumatic brain injury, Alzheimer's disease, and diabetes. While we have gained insight into mPTP biology over the last several decades, the lack of translation of this knowledge into successful clinical therapies underscores the need for continued investigation and use of different approaches to identify novel regulators of the mPTP with the hope of elucidating new therapeutic targets. Although the mPTP is known to be a voltage-gated channel, the identity of its voltage sensor remains unknown. Here we found decreased gating potential of the mPTP and increased expression and activity of sulfide quinone oxidoreductase (SQOR) in newborn Fragile X syndrome (FXS) mouse heart mitochondria, a model system of coenzyme Q excess and relatively decreased mPTP open probability. We further found that pharmacological inhibition and genetic silencing of SQOR increased mPTP open probability in vitro in adult murine cardiac mitochondria and in the isolated-perfused heart, likely by interfering with voltage sensing. Thus, SQOR is proposed to contribute to voltage sensing by the mPTP and may be a component of the voltage sensing apparatus that modulates the gating potential of the mPTP.


Assuntos
Mitocôndrias Cardíacas , Poro de Transição de Permeabilidade Mitocondrial , Oxirredutases atuantes sobre Doadores de Grupo Enxofre , Animais , Camundongos , Doença de Alzheimer , Lesões Encefálicas Traumáticas , Sulfetos , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética
3.
Anesth Analg ; 138(2): 447-455, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38215717

RESUMO

BACKGROUND: Fentanyl is widely used for analgesia and sedation in neonates, but pharmacokinetic (PK) analysis in this population has been limited by the relatively large sample volumes required for plasma-based assays. METHODS: In this multicenter observational study of fentanyl kinetics in neonates up to 42 weeks of postmenstrual age (PMA) who received fentanyl boluses and continuous infusions, dried blood spots were used for small-volume sampling. A population PK analysis was used to describe fentanyl disposition in term and preterm neonates. Covariates for the model parameters, including body weight, PMA, birth status (preterm or term), and presence of congenital cardiac disease, were assessed in a stepwise manner. RESULTS: Clearance was estimated to be greater than adult clearance of fentanyl and varied with weight. Covariate selection did not yield a significant relationship for age as a continuous or dichotomous variable (term or preterm, the latter defined as birth with PMA of <37 weeks) and clearance. CONCLUSIONS: A supra-allometric effect on clearance was determined during covariate analyses (exponential scaling factor for body weight >0.75), as has been described in population PK models that account for maturation of intrinsic clearance (here, predominantly hepatic microsomal activity) in addition to scaling for weight, both of which impact clearance in this age group.


Assuntos
Fentanila , Cardiopatias Congênitas , Recém-Nascido , Adulto , Humanos , Lactente , Fentanila/farmacocinética , Dor , Peso Corporal , Taxa de Depuração Metabólica
4.
Pediatr Res ; 92(5): 1341-1349, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35173299

RESUMO

BACKGROUND: Propofol infusion syndrome (PRIS) is a potentially lethal consequence of long-term propofol administration. Children are vulnerable and cardiac involvement is often prominent and associated with mortality. We aimed to determine the mechanism of propofol toxicity in newborn mice, hypothesizing that propofol would induce discrete defects within immature cardiac mitochondria. METHODS: Newborn murine cardiac mitochondria were exposed to propofol or intralipid in vitro. Non-exposed mitochondria served as controls. Mitochondrial respiration and membrane potential (ΔΨ) were measured and respiratory chain complex kinetics were determined. RESULTS: Propofol and intralipid exerted biological activity in isolated mitochondria. Although intralipid effects were a potential confounder, we found that propofol induced a dose-dependent increase in proton leak and caused a defect in substrate oxidation at coenzyme Q (CoQ). These impairments prevented propofol-exposed cardiomyocyte mitochondria from generating an adequate ΔΨ. The addition of the quinone analog, CoQ0, blocked propofol-induced leak and increased Complex II+III activity. CONCLUSIONS: Propofol uncoupled immature cardiomyocyte mitochondria by inducing excessive CoQ-sensitive leak and interfered with electron transport at CoQ. The findings provide new insight into the mechanisms of propofol toxicity in the developing heart and may help explain why children are vulnerable to developing PRIS. IMPACT: Propofol uncouples immature cardiomyocyte mitochondria by inducing excessive coenzyme Q (CoQ)-sensitive proton leak. Propofol also interferes with electron transport at the level of CoQ. These defects provide new insight into propofol toxicity in the developing heart.


Assuntos
Mitocôndrias Cardíacas , Propofol , Camundongos , Animais , Mitocôndrias Cardíacas/metabolismo , Ubiquinona/farmacologia , Ubiquinona/metabolismo , Propofol/toxicidade , Prótons , Oxirredução
5.
FASEB J ; 34(6): 7404-7426, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32307754

RESUMO

Fragile X syndrome (FXS) is the leading known inherited intellectual disability and the most common genetic cause of autism. The full mutation results in transcriptional silencing of the Fmr1 gene and loss of fragile X mental retardation protein (FMRP) expression. Defects in neuroenergetic capacity are known to cause a variety of neurodevelopmental disorders. Thus, we explored the integrity of forebrain mitochondria in Fmr1 knockout mice during the peak of synaptogenesis. We found inefficient thermogenic respiration due to futile proton leak in Fmr1 KO mitochondria caused by coenzyme Q (CoQ) deficiency and an open cyclosporine-sensitive channel. Repletion of mitochondrial CoQ within the Fmr1 KO forebrain closed the channel, blocked the pathological proton leak, restored rates of protein synthesis during synaptogenesis, and normalized the key phenotypic features later in life. The findings demonstrate that FMRP deficiency results in inefficient oxidative phosphorylation during the neurodevelopment and suggest that dysfunctional mitochondria may contribute to the FXS phenotype.


Assuntos
Respiração Celular/fisiologia , Síndrome do Cromossomo X Frágil/metabolismo , Síndrome do Cromossomo X Frágil/patologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Termogênese/fisiologia , Animais , Transtorno Autístico/metabolismo , Transtorno Autístico/patologia , Modelos Animais de Doenças , Feminino , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Deficiência Intelectual/metabolismo , Deficiência Intelectual/patologia , Masculino , Camundongos , Camundongos Knockout , Neurogênese/fisiologia , Prótons
6.
Pediatr Res ; 89(3): 456-463, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32674111

RESUMO

BACKGROUND: Mitochondrial permeability transition pore (mPTP) closure triggers cardiomyocyte differentiation during development while pathological opening causes cell death during myocardial ischemia-reperfusion and heart failure. Ubiquinone modulates the mPTP; however, little is known about its mechanistic role in health and disease. We previously found excessive proton leak in newborn Fmr1 KO mouse forebrain caused by ubiquinone deficiency and increased open mPTP probability. Because of the physiological differences between the heart and brain during maturation, we hypothesized that developing Fmr1 KO cardiomyocyte mitochondria would demonstrate dissimilar features. METHODS: Newborn male Fmr1 KO mice and controls were assessed. Respiratory chain enzyme activity, ubiquinone content, proton leak, and oxygen consumption were measured in cardiomyocyte mitochondria. Cardiac function was evaluated via echocardiography. RESULTS: In contrast to controls, Fmr1 KO cardiomyocyte mitochondria demonstrated increased ubiquinone content and decreased proton leak. Leak was cyclosporine (CsA)-sensitive in controls and CsA-insensitive in Fmr1 KOs. There was no difference in absolute mitochondrial respiration or cardiac function between strains. CONCLUSION: These findings establish the newborn Fmr1 KO mouse as a novel model of excess ubiquinone and closed mPTP in the developing heart. Such a model may help provide insight into the biology of cardiac development and pathophysiology of neonatal heart failure. IMPACT: Ubiquinone is in excess and the mPTP is closed in the developing FXS heart. Strengthens evidence of open mPTP probability in the normally developing postnatal murine heart and provides new evidence for premature closure of the mPTP in Fmr1 mutants. Establishes a novel model of excess CoQ and a closed pore in the developing heart. Such a model will be a valuable tool used to better understand the role of ubiquinone and the mPTP in the neonatal heart in health and disease.


Assuntos
Modelos Animais de Doenças , Coração Fetal/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/metabolismo , Camundongos Knockout , Mitocôndrias Cardíacas/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Ubiquinona/metabolismo , Animais , Atractilosídeo/análogos & derivados , Atractilosídeo/farmacologia , Ciclosporina/farmacologia , Transporte de Elétrons , Síndrome do Cromossomo X Frágil/genética , Guanosina Difosfato/farmacologia , Masculino , Camundongos , Mitocôndrias Cardíacas/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Consumo de Oxigênio , Força Próton-Motriz , Método Simples-Cego , Ubiquinona/análogos & derivados , Ubiquinona/farmacologia
7.
Perfusion ; 32(4): 306-312, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27913766

RESUMO

BACKGROUND: Myocardial tolerance to ischemia is influenced by age and preoperative cyanosis through unknown mechanisms and significantly affects postoperative outcomes. Cytochrome c oxidase (CcOx), the terminal enzyme of the mitochondrial electron transport chain, may play a role in the susceptibility to ischemic-reperfusion (IR) injury. Our study aimed at investigating changes in human myocardial CcOx activity based on age and preoperative oxygen saturation to understand its role in transition from neonatal to mature myocardium and hypoxic conditions. METHODS: The right atrial appendage from patients undergoing first time surgical repair/palliation of congenital heart defects was analyzed for steady state CcOx activity by oxidation of ferrocytochrome c via spectrophotometry and steady state CcOx subunit I protein content by protein immunoblotting. Student's t-test compared CcOx activity and protein levels between patients with preoperative hypoxia and normoxia. Multiple linear regression analysis was used to assess the effects of age and preoperative arterial oxygen saturations (SaO2) on CcOx protein activity and protein content. RESULTS: Thirty-two patients with a median (interquartile range) age of 83 days (8-174) and preoperative oxygen saturation 98% (85-100%) were enrolled. Independent of age, preoperative SaO2 ⩽90% was associated with significantly greater CcOx steady state activity (p=0.004). Additionally, older age itself was associated with increased CcOx steady state activity (p=0.022); the combination of preoperative SaO2 and age account for 33% of the variation in CcOx steady state activity (R2=0.332). There was no increase in the CcOx subunit I protein content with either age or preoperative hypoxia. CONCLUSIONS: In patients with congenital heart disease, an increase in CcOx steady state activity is seen with increasing age. Hypoxia leads to upregulation of CcOx steady state activity without an increase in the amount of enzyme protein itself. Higher CcOx activity in older and cyanotic patients may indicate CcOx-dependent reactive oxygen species as the mechanism for IR injury.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Cardiopatias Congênitas/enzimologia , Hipóxia/enzimologia , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Criança , Humanos , Pessoa de Meia-Idade , Adulto Jovem
10.
Anesth Analg ; 123(3): 670-81, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27537758

RESUMO

Exposure to carbon monoxide (CO) during general anesthesia can result from volatile anesthetic degradation by carbon dioxide absorbents and rebreathing of endogenously produced CO. Although adherence to the Anesthesia Patient Safety Foundation guidelines reduces the risk of CO poisoning, patients may still experience subtoxic CO exposure during low-flow anesthesia. The consequences of such exposures are relatively unknown. In contrast to the widely recognized toxicity of high CO concentrations, the biologic activity of low concentration CO has recently been shown to be cytoprotective. As such, low-dose CO is being explored as a novel treatment for a variety of different diseases. Here, we review the concept of anesthesia-related CO exposure, identify the sources of production, detail the mechanisms of overt CO toxicity, highlight the cellular effects of low-dose CO, and discuss the potential therapeutic role for CO as part of routine anesthetic management.


Assuntos
Anestesia por Inalação/efeitos adversos , Anestésicos Inalatórios/administração & dosagem , Anestésicos Inalatórios/toxicidade , Monóxido de Carbono/administração & dosagem , Monóxido de Carbono/toxicidade , Anestesia por Inalação/tendências , Intoxicação por Monóxido de Carbono/prevenção & controle , Citoproteção/efeitos dos fármacos , Citoproteção/fisiologia , Humanos
11.
Anesth Analg ; 121(5): 1325-35, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26465931

RESUMO

BACKGROUND: Anesthetics cause widespread apoptosis in the developing brain, resulting in neurocognitive abnormalities. However, it is unknown whether anesthesia-induced neurotoxicity occurs in humans because there is currently no modality to assess for neuronal apoptosis in vivo. The retina is unique in that it is the only portion of the central nervous system that can be directly visualized noninvasively. Thus, we aimed to determine whether isoflurane induces apoptosis in the developing retina. METHODS: CD-1 male mouse pups underwent 1-hour exposure to isoflurane (2%) or air. After exposure, activated caspase-3, caspase-9, and caspase-8 were quantified in the retina, cytochrome c release from retinal mitochondria was assessed, and the number and types of cells undergoing apoptosis were identified. Retinal uptake and the ability of fluorescent-labeled annexin V to bind to cells undergoing natural cell death and anesthesia-induced apoptosis in the retina were determined after systemic injection. RESULTS: Isoflurane activated the intrinsic apoptosis pathway in the inner nuclear layer (INL) and activated both the intrinsic and extrinsic pathways in the ganglion cell layer. Immunofluorescence demonstrated that bipolar and amacrine neurons within the INL underwent physiologic cell death in both cohorts and that amacrine cells were the likely targets of isoflurane-induced apoptosis. After injection, fluorescent-labeled annexin V was readily detected in the INL of both air-exposed and isoflurane-exposed mice and colocalized with activated caspase-3-positive cells. CONCLUSIONS: These findings indicate that isoflurane-induced neuronal apoptosis occurs in the developing retina and lays the groundwork for development of a noninvasive imaging technique to detect anesthesia-induced neurotoxicity in infants and children.


Assuntos
Anestesia por Inalação/efeitos adversos , Apoptose/efeitos dos fármacos , Isoflurano/toxicidade , Neurônios/efeitos dos fármacos , Retina/efeitos dos fármacos , Retina/crescimento & desenvolvimento , Fatores Etários , Animais , Animais Recém-Nascidos , Isoflurano/administração & dosagem , Masculino , Camundongos , Neurônios/patologia , Retina/patologia
12.
Anesth Analg ; 118(6): 1284-92, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24413549

RESUMO

BACKGROUND: Volatile anesthetics cause widespread apoptosis in the developing brain. Carbon monoxide (CO) has antiapoptotic properties, and exhaled endogenous CO is commonly rebreathed during low-flow anesthesia in infants and children, resulting in subclinical CO exposure. Thus, we aimed to determine whether CO could limit isoflurane-induced apoptosis in the developing brain. METHODS: Seven-day-old male CD-1 mouse pups underwent 1-hour exposure to 0 (air), 5, or 100 ppm CO in air with or without isoflurane (2%). We assessed carboxyhemoglobin levels, cytochrome c peroxidase activity, and cytochrome c release from forebrain mitochondria after exposure and quantified the number of activated caspase-3 positive cells and TUNEL positive nuclei in neocortex, hippocampus, and hypothalamus/thalamus. RESULTS: Carboxyhemoglobin levels approximated those expected in humans after a similar time-weighted CO exposure. Isoflurane significantly increased cytochrome c peroxidase activity, cytochrome c release, the number of activated caspase-3 cells, and TUNEL positive nuclei in the forebrain of air-exposed mice. CO, however, abrogated isoflurane-induced cytochrome c peroxidase activation and cytochrome c release from forebrain mitochondria and decreased the number of activated caspase-3 positive cells and TUNEL positive nuclei after simultaneous exposure with isoflurane. CONCLUSIONS: Taken together, the data indicate that CO can limit apoptosis after isoflurane exposure via inhibition of cytochrome c peroxidase depending on concentration. Although it is unknown whether CO directly inhibited isoflurane-induced apoptosis, it is possible that low-flow anesthesia designed to target rebreathing of specific concentrations of CO may be a desired strategy to develop in the future in an effort to prevent anesthesia-induced neurotoxicity in infants and children.


Assuntos
Anestésicos Inalatórios/antagonistas & inibidores , Anestésicos Inalatórios/toxicidade , Apoptose/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Monóxido de Carbono/farmacologia , Isoflurano/antagonistas & inibidores , Isoflurano/toxicidade , Animais , Animais Recém-Nascidos , Carboxihemoglobina/metabolismo , Caspase 3/metabolismo , Citocromo-c Peroxidase/antagonistas & inibidores , Citocromo-c Peroxidase/metabolismo , Citocromos c/metabolismo , Feminino , Heme/metabolismo , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Gravidez
13.
Pediatr Crit Care Med ; 15(3): 229-35, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24395002

RESUMO

OBJECTIVES: To determine if alpha II-spectrin breakdown products can be detected in the serum of neonates with congenital heart disease in the perioperative period. DESIGN: Prospective observational cohort study. SETTING: Pediatric cardiac ICU in an urban tertiary care academic center. PATIENTS: Neonates with congenital heart disease undergoing surgical repair or palliation. INTERVENTIONS: Serial blood sampling for measurement of 120 and 150 kDa spectrin breakdown products. MEASUREMENTS AND MAIN RESULTS: Fourteen neonates with congenital heart disease undergoing cardiac surgery were evaluated. Nine infants underwent open-heart surgery and five underwent closed-heart surgery. Serum spectrin breakdown products were measured with sandwich enzyme-linked immunosorbent assay preoperatively and then 6, 24, 48, 72, and 96 hours following surgery. Brain imaging was obtained as part of routine clinical care in 12 patients preoperatively and six patients postoperatively. Six patients had normal preoperative imaging (three closed-heart surgery and three open-heart surgery), whereas six had evidence of neurologic injury prior to surgery (one closed-heart surgery and five open-heart surgery). Only one patient had a postoperative imaging study that lacked injury. All others demonstrated infarction or hemorrhage. Spectrin breakdown product 120 kDa significantly increased 24 hours after open-heart surgery compared to preoperative values and time-matched closed-heart surgery levels. Spectrin breakdown product 150 kDa significantly increased 6 hours after open-heart surgery compared to preoperative values. There was no significant change in spectrin breakdown products following closed-heart surgery. Peak spectrin breakdown products significantly increased following open-heart surgery compared to closed-heart surgery. CONCLUSIONS: Spectrin breakdown products can be detected in the serum of neonates with congenital heart disease in the perioperative period and levels increased to a greater degree in infants following open-heart surgery. These findings suggest that, in future work, serum spectrin breakdown products may potentially be developed as biomarkers for brain necrosis and apoptosis in infants with congenital heart disease.


Assuntos
Biomarcadores/sangue , Cardiopatias Congênitas/sangue , Espectrina/metabolismo , Procedimentos Cirúrgicos Cardíacos/métodos , Estudos de Coortes , Ensaio de Imunoadsorção Enzimática , Feminino , Cardiopatias Congênitas/cirurgia , Humanos , Recém-Nascido , Unidades de Terapia Intensiva Pediátrica , Masculino , Estudos Prospectivos , Centros de Atenção Terciária
14.
Dev Neurosci ; 35(4): 347-58, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23900139

RESUMO

Fragile X syndrome (FXS), due to transcriptional silencing of fragile X mental retardation protein (FMRP), is characterized by excess synaptic connections and impaired dendrite maturation. Programmed cell death (PCD) is critical for synaptogenesis and elimination of aberrant neuronal connections in the developing brain; however, the role of FMRP in PCD is unknown. The aim of this work was to assess the intrinsic apoptosis pathway in the developing brain of Fmr1 mutants. To accomplish this, we evaluated two different Fmr1 mutant strains of 10-day-old male mice compared with appropriate controls. We performed immunohistochemistry for activated caspase-3 and TUNEL assays, quantified the number of neurons in neocortex and hippocampus, determined cytochrome c peroxidase activity, measured the amount of cytochrome c release from forebrain mitochondria, and assessed levels of key pro- and antiapoptotic mediators with immunoblot analysis. Both Fmr1 mutant strains demonstrated decreased apoptosis in neocortex, hippocampus, and basolateral amygdala, impaired cytochrome c and procaspase-9 release from mitochondria despite intact Bax translocation, increased expression of the antiapoptotic protein, BCL-xL, and increased number of neurons. Taken together, the data suggest that PCD is impaired due to increased BCL-xL expression and is associated with excess neurons in the developing brain of FMRP-deficient mice. It is possible that deficient PCD prevents neuron elimination and results in abnormal retention of developmentally transient neurons. Thus, defective PCD may contribute to the excess synaptic connections known to exist in Fmr1 mutants and could play a role in the behavioral phenotype of children with FXS.


Assuntos
Apoptose/genética , Apoptose/fisiologia , Encéfalo/crescimento & desenvolvimento , Proteína do X Frágil da Deficiência Intelectual/genética , Animais , Proteínas Reguladoras de Apoptose/biossíntese , Proteínas Reguladoras de Apoptose/genética , Western Blotting , Encéfalo/patologia , Caspase 3/metabolismo , Contagem de Células , Citocromo-c Peroxidase/metabolismo , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/patologia , Heme/análogos & derivados , Heme/metabolismo , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação/genética , Mutação/fisiologia , Neurônios/fisiologia , Proteína Oncogênica v-akt/genética , Proteína Oncogênica v-akt/fisiologia , Fosforilação , Proteína de Morte Celular Associada a bcl/genética , Proteína de Morte Celular Associada a bcl/fisiologia
15.
Transfusion ; 52(5): 1024-30, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22098205

RESUMO

BACKGROUND: Intracellular adenosine triphosphate (ATP) levels decline significantly during storage of platelet (PLT) products, in part due to PLT degranulation. However, metabolic ATP stores also become depleted during storage through an unclear mechanism. Since both anaerobic glycolysis and oxidative phosphorylation are important for PLT ATP production, it is possible that the reduction in metabolic ATP reflects impaired oxidative phosphorylation. To assess this, we evaluated the kinetic activity and protein expression of cytochrome C oxidase (CcOX) in stored apheresis PLTs. STUDY DESIGN AND METHODS: Apheresis PLTs were collected and stored with agitation at 22 ± 2°C for 7 days. In vitro measurements of PLT metabolic state, function, and activation were performed on Days 0, 2, 4, and 7 of storage. Total PLT ATP content, steady-state CcOX kinetic activity, and protein immunoblotting for CcOX Subunits I and IV were also performed using isolated PLT mitochondria from simultaneously collected samples. RESULTS: Intra-PLT ATP and steady-state PLT CcOX activity declined significantly and in a progressive manner throughout storage while steady-state levels of CcOX I and IV protein remained unchanged. Time-dependent decline in CcOX activity correlated with progressive ATP depletion over time. CONCLUSION: During storage of apheresis PLTs for 7 days, the parallel decline in CcOX function and intra-PLT ATP suggests development of an acquired impairment in PLT oxidative phosphorylation associated with perturbed ATP homeostasis in stored PLTs.


Assuntos
Trifosfato de Adenosina/metabolismo , Plaquetas/metabolismo , Preservação de Sangue , Complexo IV da Cadeia de Transporte de Elétrons/sangue , Plaquetoferese , Complexo IV da Cadeia de Transporte de Elétrons/fisiologia , Humanos
16.
Pediatr Crit Care Med ; 13(3): 259-64, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-21760563

RESUMO

OBJECTIVE: Sepsis is common in children and often results in cardiac dysfunction. Assessment of patients with sepsis-associated myocardial depression using ejection fraction and fractional shortening with conventional echocardiography is load dependent and often reveals cardiac dysfunction only after clinical deterioration has occurred. Speckle tracking imaging is a novel technology that can assess deformation and strain by tracking displacement of acoustic markers in the myocardium. We hypothesize that speckle tracking imaging will detect cardiac impairments during sepsis that are not appreciated by conventional echocardiography. DESIGN: Retrospective, observational study. SETTING: A large, tertiary-care pediatric intensive care unit. PATIENTS: Fifteen pediatric patients with septic shock, and 30 age- and gender-matched healthy controls. INTERVENTIONS: Transthoracic echocardiograms from subjects with septic shock (by American College of Chest Physicians/Society of Critical Care Medicine consensus criteria) and controls were evaluated. Speckle tracking imaging was used to obtain tissue displacement, velocity, strain, and strain rate in radial, longitudinal, and circumferential planes. Ejection fraction and fractional shortening were determined by conventional methods. Comparisons between groups were made using a paired t test. MEASUREMENTS AND MAIN RESULTS: Compared to control subjects, children with septic shock demonstrated impaired myocardial performance as quantified by speckle tracking imaging. Significant differences were seen in circumferential and longitudinal strain (p < .001), strain rate (p < .05), radial displacement (p < .001), and rotational velocity and displacement (p < .01). There was no significant difference in ejection fraction and fractional shortening between septic patients and controls. CONCLUSIONS: Speckle tracking imaging detected a number of significantly impaired measures of ventricular performance in children with sepsis, not appreciated by conventional echocardiography. This technology may improve our understanding and identification of myocardial depression in the critically ill septic child.


Assuntos
Ecocardiografia/métodos , Interpretação de Imagem Assistida por Computador , Choque Séptico/complicações , Disfunção Ventricular Esquerda/diagnóstico por imagem , Adolescente , Estudos de Casos e Controles , Criança , Pré-Escolar , Humanos , Lactente , Análise Multivariada , Análise de Regressão , Estudos Retrospectivos , Método Simples-Cego , Disfunção Ventricular Esquerda/etiologia
17.
J Vis Exp ; (181)2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35311818

RESUMO

The use of the ex-vivo retrograde perfused heart has long been a cornerstone of ischemia-reperfusion investigation since its development by Oskar Langendorff over a century ago. Although this technique has been applied to mice over the last 25 years, its use in this species has been limited to adult animals. Development of a successful method to consistently cannulate the neonatal murine aorta would allow for the systematic study of the isolated retrograde perfused heart during a critical period of cardiac development in a genetically modifiable and low-cost species. Modification of the Langendorff preparation enables cannulation and establishment of reperfusion in the neonatal murine heart while minimizing ischemic time. Optimization requires a two-person technique to permit successful cannulation of the newborn mouse aorta using a dissecting microscope and a modified commercially available needle. The use of this approach will reliably establish retrograde perfusion within 3 min. Because the fragility of the neonatal mouse heart and ventricular cavity size prevents direct measurement of intraventricular pressure generated using a balloon, use of a force transducer connected by a suture to the apex of the left ventricle to quantify longitudinal contractile tension is necessary. This method allows investigators to successfully establish an isolated constant-flow retrograde-perfused newborn murine heart preparation, permitting the study of developmental cardiac biology in an ex-vivo manner. Importantly, this model will be a powerful tool to investigate the physiological and pharmacological responses to ischemia-reperfusion in the neonatal heart.


Assuntos
Ventrículos do Coração , Coração , Animais , Coração/fisiologia , Frequência Cardíaca , Humanos , Preparação de Coração Isolado/métodos , Camundongos , Miocárdio , Perfusão/métodos
18.
J Vis Exp ; (184)2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35723461

RESUMO

The mitochondrial permeability transition pore (mPTP) is a voltage-gated, nonselective, inner mitochondrial membrane (IMM) mega-channel important in health and disease. The mPTP mediates leakage of protons across the IMM during low-conductance opening and is specifically inhibited by cyclosporine A (CsA). Coenzyme Q (CoQ) is a regulator of the mPTP, and tissue-specific differences have been found in CoQ content and open probability of the mPTP in forebrain and heart mitochondria in a newborn mouse model of fragile X syndrome (FXS, Fmr1 knockout). We developed a technique to determine the voltage threshold for mPTP opening in this mutant strain, exploiting the role of the mPTP as a proton leak channel. To do so, oxygen consumption and membrane potential (ΔΨ) were simultaneously measured in isolated mitochondria using polarography and a tetraphenylphosphonium (TPP+) ion-selective electrode during leak respiration. The threshold for mPTP opening was determined by the onset of CsA-mediated inhibition of proton leak at specific membrane potentials. Using this approach, differences in voltage gating of the mPTP were precisely defined in the context of CoQ excess. This novel technique will permit future investigation for enhancing the understanding of physiological and pathological regulation of low-conductance opening of the mPTP.


Assuntos
Poro de Transição de Permeabilidade Mitocondrial , Ubiquinona , Animais , Camundongos , Cálcio/metabolismo , Ciclosporina/farmacologia , Proteína do X Frágil da Deficiência Intelectual , Mitocôndrias Cardíacas/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/fisiologia , Probabilidade , Prótons , Espécies Reativas de Oxigênio/metabolismo
19.
Mitochondrion ; 65: 1-10, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35500860

RESUMO

Brown adipose tissue (BAT) mitochondria generate heat via uncoupled respiration due to excessive proton leak through uncoupling proteins (UCPs). We previously found hyperthermia in a newborn mouse model of fragile X syndrome and excessive leak in Fmr1 KO forebrain mitochondria caused by CoQ deficiency. The inefficient thermogenic nature of Fmr1 mutant forebrain mitochondria was reminiscent of BAT metabolic features. Thus, we aimed to characterize BAT mitochondrial function in these hyperthermic mice using a top-down approach. Although there was no change in steady-state levels of UCP1 expression between strains, BAT weighed significantly less in Fmr1 mutants compared with controls. Fmr1 KO BAT mitochondria demonstrated impaired substrate oxidation, lower mitochondrial membrane potentials and rates of respiration, and CoQ deficiency. The CoQ analog decylubiquinone normalized CoQ-dependent electron flux and unmasked excessive proton leak. Unlike mutant forebrain, where such deficiency resulted in pathological proton leak, CoQ deficiency within BAT mitochondria resulted largely in abnormal substrate oxidation. This suggests that CoQ is important in BAT for uncoupled respiration to produce heat during development. Although our data provide further evidence of a link between fragile X mental retardation protein (FMRP) and CoQ biosynthesis, the results highlight the importance of CoQ in developing tissues and suggest tissue-specific differences from CoQ deficiency. Because BAT mitochondria are primarily responsible for regulating core body temperature, the defects we describe in Fmr1 KOs could manifest as an adaptive downregulated response to hyperthermia or could result from FMRP deficiency directly.


Assuntos
Tecido Adiposo Marrom , Síndrome do Cromossomo X Frágil , Tecido Adiposo Marrom/metabolismo , Animais , Ataxia , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Doenças Mitocondriais , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Debilidade Muscular , Prótons , Ubiquinona/deficiência
20.
Physiol Rep ; 10(15): e15402, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35923108

RESUMO

Infants and children are vulnerable to developing propofol infusion syndrome (PRIS) and young age is a risk factor. Cardiac involvement is often prominent and associated with death. However, the mechanisms of pediatric PRIS are poorly understood because of the paucity of investigation and lack of a gold standard animal model. Unfortunately, in vivo modeling of PRIS in a newborn mouse is not feasible and would be complicated by confounders. Thus, we focused on propofol-induced cardiotoxicity and aimed to develop an ex-vivo model in the isolated-perfused newborn mouse heart. We hypothesized that the model would recapitulate the key cardiac features of PRIS seen in infants and children and would corroborate prior in vitro observations. Isolated perfused newborn mouse hearts were exposed to a toxic dose of propofol or intralipid for 30-min. Surface electrocardiogram, ventricular contractile force, and oxygen extraction were measured over time. Real-time multiphoton laser imaging was utilized to quantify calcein and tetramethylrhodamine ethyl ester fluorescence. Propidium iodide uptake was assessed following drug exposure. A toxic dose of propofol rapidly induced dysrhythmias, depressed ventricular contractile function, impaired the mitochondrial membrane potential, and increased open probability of the permeability transition pore in propofol-exposed hearts without causing cell death. These features mimicked the hallmarks of pediatric PRIS and corroborated prior observations made in isolated newborn cardiomyocyte mitochondria. Thus, acute propofol-induced cardiotoxicity in the isolated-perfused developing mouse heart may serve as a relevant ex-vivo model for pediatric PRIS.


Assuntos
Propofol , Animais , Animais Recém-Nascidos , Arritmias Cardíacas , Cardiotoxicidade , Coração/fisiologia , Humanos , Camundongos , Miócitos Cardíacos , Propofol/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA