Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
BMC Cancer ; 11: 14, 2011 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-21226903

RESUMO

BACKGROUND: Several studies have shown that NDRG2 mRNA is down-regulated or undetectable in various human cancers and cancer cell-lines. Although the function of NDRG2 is currently unknown, high NDRG2 expression correlates with improved prognosis in high-grade gliomas, gastric cancer and hepatocellular carcinomas. Furthermore, in vitro studies have revealed that over-expression of NDRG2 in cell-lines causes a significant reduction in their growth. The aim of this study was to examine levels of NDRG2 mRNA in several human cancers, with focus on breast cancer, by examining affected and normal tissue. METHODS: By labelling a human Cancer Profiling Array with a radioactive probe against NDRG2, we evaluated the level of NDRG2 mRNA in 154 paired normal and tumor samples encompassing 19 different human cancers. Furthermore, we used quantitative real-time RT-PCR to quantify the levels of NDRG2 and MYC mRNA in thyroid gland cancer and breast cancer, using a distinct set of normal and tumor samples. RESULTS: From the Cancer Profiling Array, we saw that the level of NDRG2 mRNA was reduced by at least 2-fold in almost a third of the tumor samples, compared to the normal counterpart, and we observed a marked decreased level in colon, cervix, thyroid gland and testis. However, a Benjamini-Hochberg correction showed that none of the tissues showed a significant reduction in NDRG2 mRNA expression in tumor tissue compared to normal tissue. Using quantitative RT-PCR, we observed a significant reduction in the level of NDRG2 mRNA in a distinct set of tumor samples from both thyroid gland cancer (p = 0.02) and breast cancer (p = 0.004), compared with normal tissue. MYC mRNA was not significantly altered in breast cancer or in thyroid gland cancer, compared with normal tissue. In thyroid gland, no correlation was found between MYC and NDRG2 mRNA levels, but in breast tissue we found a weakly significant correlation with a positive r-value in both normal and tumor tissues, suggesting that MYC and NDRG2 mRNA are regulated together. CONCLUSION: Expression of NDRG2 mRNA is reduced in many different human cancers. Using quantitative RT-PCR, we have verified a reduction in thyroid cancer and shown, for the first time, that NDRG2 mRNA is statistically significantly down-regulated in breast cancer. Furthermore, our observations indicate that other tissues such as cervix and testis can have lower levels of NDRG2 mRNA in tumor tissue compared to normal tissue.


Assuntos
Neoplasias da Mama/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Proteínas Supressoras de Tumor/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Proto-Oncogênicas c-myc/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
2.
BMC Cancer ; 7: 192, 2007 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-17935612

RESUMO

BACKGROUND: It has recently been shown that NDRG2 mRNA is down-regulated or undetectable in several human cancers and cancer cell-lines. Although the function of NDRG2 is unknown, high NDRG2 expression correlates with improved prognosis in high-grade gliomas. The aim of this study has been to examine NDRG2 mRNA expression in colon cancer. By examining affected and normal tissue from individuals with colorectal adenomas and carcinomas, as well as in healthy individuals, we aim to determine whether and at which stages NDRG2 down-regulation occurs during colonic carcinogenesis. METHODS: Using quantitative RT-PCR, we have determined the mRNA levels for NDRG2 in low-risk (n = 15) and high-risk adenomas (n = 57), colorectal carcinomas (n = 50) and corresponding normal tissue, as well as control tissue from healthy individuals (n = 15). NDRG2 levels were normalised to beta-actin. RESULTS: NDRG2 mRNA levels were lower in colorectal carcinomas compared to normal tissue from the control group (p < 0.001). When comparing adenomas/carcinomas with adjacent normal tissue from the same individual, NDRG2 expression levels were significantly reduced in both high-risk adenoma (p < 0.001) and in colorectal carcinoma (p < 0.001). There was a trend for NDRG2 levels to decrease with increasing Dukes' stage (p < 0.05). CONCLUSION: Our results demonstrate that expression of NDRG2 is down-regulated at a late stage during colorectal carcinogenesis. Future studies are needed to address whether NDRG2 down-regulation is a cause or consequence of the progression of colorectal adenomas to carcinoma.


Assuntos
Adenoma/genética , Neoplasias Colorretais/genética , Regulação para Baixo , Proteínas Supressoras de Tumor/metabolismo , Adenoma/patologia , Neoplasias Colorretais/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
3.
Hum Mol Genet ; 14(24): 3945-53, 2005 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-16301215

RESUMO

Two phenotypes exist in the human population with regard to expression of lactase in adults. Lactase non-persistence (adult-type hypolactasia and lactose intolerance) is characterized by a decline in the expression of lactase-phlorizin hydrolase (LPH) after weaning. In contrast, lactase-persistent individuals have a high LPH throughout their lifespan. Lactase persistence and non-persistence are associated with a T/C polymorphism at position -13,910 upstream the lactase gene. A nuclear factor binds more strongly to the T-13,910 variant associated with lactase persistence than the C-13,910 variant associated with lactase non-persistence. Oct-1 and glyceraldehyde-3-phosphate dehydrogenase were co-purified by DNA affinity purification using the sequence of the T-13,910 variant. Supershift analyses show that Oct-1 binds directly to the T-13,910 variant, and we suggest that GAPDH is co-purified due to interactions with Oct-1. Expression of Oct-1 stimulates reporter gene expression from the T and the C-13,910 variant/LPH promoter constructs only when it is co-expressed with HNF1alpha. Binding sites for other intestinal transcription factors (GATA-6, HNF4alpha, Fox and Cdx-2) were identified in the region of the -13,910 T/C polymorphism. Three of these sites are required for the enhancer activity of the -13,910 region. The data suggest that the binding of Oct-1 to the T-13,910 variant directs increased lactase promoter activity and this might provide an explanation for the lactase persistence phenotype in the human population.


Assuntos
Lactase/genética , Fator 1 de Transcrição de Octâmero/metabolismo , Polimorfismo Genético , Regiões Promotoras Genéticas/genética , Sítios de Ligação , Elementos Facilitadores Genéticos , Gliceraldeído 3-Fosfato Desidrogenase (NADP+)/genética , Gliceraldeído 3-Fosfato Desidrogenase (NADP+)/isolamento & purificação , Gliceraldeído 3-Fosfato Desidrogenase (NADP+)/metabolismo , Fator 1-alfa Nuclear de Hepatócito/genética , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Humanos , Lactase/metabolismo , Lactase-Florizina Hidrolase/genética , Lactase-Florizina Hidrolase/metabolismo , Intolerância à Lactose/genética , Fator 1 de Transcrição de Octâmero/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Toxicol Appl Pharmacol ; 199(3): 354-63, 2004 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-15364550

RESUMO

The UDP glucuronosyltransferases (UGT) of the gastrointestinal (GI) tract have a crucial role in protection against the toxic effects of lipophilic chemicals in the environment. UGTs such as UGT1A7, UGT1A8, and UGT1A10 are exclusively expressed in gastrointestinal tissues, each with a unique tissue distribution pattern that is subject to interindividual variation. The factors regulating this tissue-specific expression and that contribute to variability are beginning to be elucidated. Studies on the UGT1A7, 1A8, 1A9, and 1A10 gene promoters in Caco-2 cells, an in vitro model of enterocytes of the gastrointestinal tract, have identified the caudal homeodomain transcription factor, Cdx2, as an important regulator of the UGT1A8 and 1A10 gene proximal promoters. This transcription factor is found exclusively in the small intestine and colon: it is absent in the gastric epithelium and the esophagus. Cdx2 regulates the UGT1A8 and 1A10 promoters in cooperation with hepatocyte nuclear factor 1alpha (HNF1alpha). It is noteworthy that UGT1A7 is not expressed in gastrointestinal tissue distal to the gastric mucosa and does not contain a Cdx2 binding site in its proximal promoter. Transcription factors, including Sp1, which differentially bind to the initiator regions of the UGT1A8, 1A9, and 1A10 promoters, also contribute to the differences in expression of these UGTs in Caco-2 cells. The identification of important regulatory regions of UGT genes expressed in the gastrointestinal tract, and the transcription factors that bind to these regions, will aid in the elucidation of factors that contribute to interindividual differences in gastrointestinal UGT expression. In turn, this will lead to further understanding of interindividual variation in the capacity of the GI tract to metabolize lipophilic chemicals and to act as a barrier to dietary toxins and orally administered drugs.


Assuntos
Sistema Digestório/enzimologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Glucuronosiltransferase/genética , Glucuronosiltransferase/metabolismo , Animais , Sistema Digestório/metabolismo , Enterócitos/enzimologia , Enterócitos/metabolismo , Glucuronídeos/metabolismo , Humanos
5.
Mol Pharmacol ; 65(4): 953-63, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15044625

RESUMO

The human UDP-glucuronosyltransferases (UGT) -1A8 and -1A10 are exclusively expressed in extrahepatic tissues and primarily in the gastrointestinal tract, whereas UGT1A9 is expressed mainly in the liver and kidneys. We have demonstrated previously that the UGT1A8 and UGT1A10 genes, in contrast to the UGT1A9 gene, are regulated via an initiator-like element in their proximal promoters. To determine the elements that contribute to the gastrointestinal expression of UGT1A8 and -1A10, we conducted deletion analysis of the UGT1A8, -1A9, and -1A10 promoters in the colon-derived cell line Caco2. DNA elements contributing significantly to UGT1A8, -1A9, and -1A10 promoter activity were found to reside primarily within 140 base pairs of the transcription start site. Within this region, putative binding sites for the intestine-specific transcription factor, caudal-related homeodomain protein 2 (Cdx2), and hepatocyte nuclear factor 1 (HNF1) were identified. Using gel shift and functional assays, HNF1alpha was demonstrated to bind to and activate the UGT1A8, -1A9, and -1A10 promoters. In contrast, Cdx2 bound to and activated the UGT1A8 and -1A10 promoters but could not activate the UGT1A9 promoter. A single base pair difference between the UGT1A8 and -1A10 promoters, three base pairs downstream of the consensus Cdx2 site, contributed to the observed difference in Cdx2 binding and Cdx2-mediated promoter activation of these two promoters. In addition, Cdx2 was shown to cooperate with HNF1alpha to synergistically activate the UGT1A8, -1A9, and -1A10 promoters. These studies provide insight into the mechanisms controlling the extrahepatic expression of the UGT1A8, -1A9, and -1A10 genes.


Assuntos
Regulação Enzimológica da Expressão Gênica , Glucuronosiltransferase/metabolismo , Proteínas de Homeodomínio/fisiologia , Proteínas Nucleares , Fatores de Transcrição/fisiologia , Fator de Transcrição CDX2 , Células CACO-2 , Proteínas de Ligação a DNA/fisiologia , Glucuronosiltransferase/genética , Fator 1 Nuclear de Hepatócito , Fator 1-alfa Nuclear de Hepatócito , Fator 1-beta Nuclear de Hepatócito , Proteínas de Homeodomínio/metabolismo , Humanos , Fígado/enzimologia , Regiões Promotoras Genéticas/fisiologia , Transativadores , UDP-Glucuronosiltransferase 1A
6.
J Biol Chem ; 278(38): 36107-14, 2003 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-12847094

RESUMO

The human UDP-glucuronosyltransferases, UGT1A8, 1A9, and 1A10, are closely related in sequence and have a major role in the elimination of lipophilic chemicals by glucuronidation. UGT1A8 and 1A10 are expressed exclusively in the gastrointestinal tract, whereas UGT1A9 is expressed mainly in the liver and kidneys. To determine the factors contributing to the extrahepatic expression of these UDP-glucuronosyltransferases, we have cloned and characterized the promoters of the UGT1A8, 1A9, and 1A10 genes and studied their regulation in the colon cell line, Caco2. Their transcription start sites were mapped, and a functional overlapping Sp1/initiator-like site was identified which strongly contributed to UGT1A8 and 1A10 promoter activity. The high promoter activity of UGT1A8 and 1A10 correlated with the binding of nuclear proteins (complex B) to this region. Two-bp differences in the corresponding site in the UGT1A9 promoter prevented the binding of complex B and reduced promoter activity. Although Sp1 was able to bind to the Sp1/initiator-like site, its binding was dispensable for promoter activity. However, the binding of Sp1 to a second Sp1 site 30 bp 5' to the Sp1/initiator-like site greatly enhanced the activity of the UGT1A8 and 1A10 promoters. These results provide evidence that the UGT1A8, 1A9, and 1A10 genes are differentially regulated through an initiator element in their 5'-flanking regions.


Assuntos
Regulação da Expressão Gênica , Glucuronosiltransferase/genética , Regiões Promotoras Genéticas , Sequência de Bases , Sítios de Ligação , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Clonagem Molecular , Primers do DNA/química , Sistema Digestório/metabolismo , Glucuronosiltransferase/química , Humanos , Rim/metabolismo , Fígado/metabolismo , Luciferases/metabolismo , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Transcrição Gênica , UDP-Glucuronosiltransferase 1A
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA