Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(19): e2221440120, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37126706

RESUMO

Geraniol derived from essential oils of various plant species is widely used in the cosmetic and perfume industries. It is also an essential trait of the pleasant smell of rose flowers. In contrast to other monoterpenes which are produced in plastids via the methyl erythritol phosphate pathway, geraniol biosynthesis in roses relies on cytosolic NUDX1 hydrolase which dephosphorylates geranyl diphosphate (GPP). However, the metabolic origin of cytosolic GPP remains unknown. By feeding Rosa chinensis "Old Blush" flowers with pathway-specific precursors and inhibitors, combined with metabolic profiling and functional characterization of enzymes in vitro and in planta, we show that geraniol is synthesized through the cytosolic mevalonate (MVA) pathway by a bifunctional geranyl/farnesyl diphosphate synthase, RcG/FPPS1, producing both GPP and farnesyl diphosphate (FPP). The downregulation and overexpression of RcG/FPPS1 in rose petals affected not only geraniol and germacrene D emissions but also dihydro-ß-ionol, the latter due to metabolic cross talk of RcG/FPPS1-dependent isoprenoid intermediates trafficking from the cytosol to plastids. Phylogenetic analysis together with functional characterization of G/FPPS orthologs revealed that the G/FPPS activity is conserved among Rosaceae species. Site-directed mutagenesis and molecular dynamic simulations enabled to identify two conserved amino acids that evolved from ancestral FPPSs and contribute to GPP/FPP product specificity. Overall, this study elucidates the origin of the cytosolic GPP for NUDX1-dependent geraniol production, provides insights into the emergence of the RcG/FPPS1 GPPS activity from the ancestral FPPSs, and shows that RcG/FPPS1 plays a key role in the biosynthesis of volatile terpenoid compounds in rose flowers.


Assuntos
Geraniltranstransferase , Rosa , Geraniltranstransferase/genética , Ácido Mevalônico/metabolismo , Rosa/metabolismo , Citosol/metabolismo , Filogenia , Terpenos/metabolismo , Flores/metabolismo
2.
Plant J ; 119(1): 84-99, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38578218

RESUMO

Tuta absoluta ("leafminer"), is a major pest of tomato crops worldwide. Controlling this insect is difficult due to its efficient infestation, rapid proliferation, and resilience to changing weather conditions. Furthermore, chemical pesticides have only a short-term effect due to rapid development of T. absoluta strains. Here, we show that a variety of tomato cultivars, treated with external phenylalanine solutions exhibit high resistance to T. absoluta, under both greenhouse and open field conditions, at different locations. A large-scale metabolomic study revealed that tomato leaves absorb and metabolize externally given Phe efficiently, resulting in a change in their volatile profile, and repellence of T. absoluta moths. The change in the volatile profile is due to an increase in three phenylalanine-derived benzenoid phenylpropanoid volatiles (BPVs), benzaldehyde, phenylacetaldehyde, and 2-phenylethanol. This treatment had no effect on terpenes and green leaf volatiles, known to contribute to the fight against insects. Phe-treated plants also increased the resistance of neighboring non-treated plants. RNAseq analysis of the neighboring non-treated plants revealed an exclusive upregulation of genes, with enrichment of genes related to the plant immune response system. Exposure of tomato plants to either benzaldehyde, phenylacetaldehyde, or 2-phenylethanol, resulted in induction of genes related to the plant immune system that were also induced due to neighboring Phe-treated plants. We suggest a novel role of phenylalanine-derived BPVs as mediators of plant-insect interactions, acting as inducers of the plant defense mechanisms.


Assuntos
Fenilalanina , Folhas de Planta , Solanum lycopersicum , Compostos Orgânicos Voláteis , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/parasitologia , Fenilalanina/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Animais , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/parasitologia , Benzaldeídos/metabolismo , Benzaldeídos/farmacologia , Acetaldeído/análogos & derivados , Acetaldeído/metabolismo , Acetaldeído/farmacologia , Mariposas/fisiologia , Mariposas/efeitos dos fármacos , Doenças das Plantas/parasitologia , Doenças das Plantas/imunologia , Manduca/fisiologia
3.
Plant Biotechnol J ; 22(2): 427-444, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38032727

RESUMO

Plants are sessile and therefore have developed an extraordinary capacity to adapt to external signals. Here, the focus is on the plasticity of the plant cell to respond to new intracellular cues. Ketocarotenoids are high-value natural red pigments with potent antioxidant activity. In the present study, system-level analyses have revealed that the heterologous biosynthesis of ketocarotenoids in tomato initiated a series of cellular and metabolic mechanisms to cope with the formation of metabolites that are non-endogenous to the plant. The broad multilevel changes were linked to, among others, (i) the remodelling of the plastidial membrane, where the synthesis and storage of ketocarotenoids occurs; (ii) the recruiting of core metabolic pathways for the generation of metabolite precursors and energy; and (iii) redox control. The involvement of the metabolites as regulators of cellular processes shown here reinforces their pivotal role suggested in the remodelled 'central dogma' concept. Furthermore, the role of metabolic reprogramming to ensure cellular homeostasis is proposed.


Assuntos
Carotenoides , Solanum lycopersicum , Carotenoides/metabolismo , Solanum lycopersicum/genética , Reprogramação Metabólica , Plantas/metabolismo , Homeostase
4.
Chirality ; 36(8): e23702, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39138008

RESUMO

Pistacia palaestina Boiss. is a common tree in the Mediterranean maquis. The leaves of this plant accumulate defensive monoterpenes, whose levels greatly increase in galls induced by the aphid Baizongia pistaciae. We previously found a significant chemopolymorphism in monoterpene content among individual trees, but the chirality of these monoterpenes was unknown. Although most plant species specifically accumulate one enantiomeric form of a given compound, P. palaestina individuals display chemopolymorphism in the chirality of the key monoterpenes accumulated. We report here a marked enantiomeric variation for the limonene, α- and ß-pinene, camphene, sabinene, δ-3-carene, and terpene-4-ol content in leaves and galls of nine different naturally growing P. palaestina trees. Interestingly, insect-induced gall monoterpene composition is an augmentation of the specific enantiopolymorphism originally displayed by each individual tree.


Assuntos
Monoterpenos , Pistacia , Folhas de Planta , Folhas de Planta/química , Monoterpenos/química , Pistacia/química , Estereoisomerismo , Animais , Afídeos , Tumores de Planta/parasitologia
5.
Planta ; 257(4): 79, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36912967

RESUMO

MAIN CONCLUSION: Ambrosia species differ both in their trichome types and in metabolic profiles of leaf volatiles. The current study provides tools for easier taxonomic identification of ragweed species. The genus Ambrosia (Asteraceae) includes some of the most noxious allergenic invasive weeds in the world. Due to high polymorphism in this genus, identification of species is often difficult. This study focuses on microscopic investigation of foliar features and GC-MS identification of the main leaf volatile components of three Ambrosia species currently found in Israel-invasive species Ambrosia confertiflora and A. tenuifolia, and transient A. grayi. A. confertiflora and A. tenuifolia have three trichome types: non-glandular trichomes, capitate glandular trichomes and linear glandular trichomes. Their non-glandular trichomes and capitate trichomes have distinct structures and can serve as taxonomic characters. A. grayi (the least successful invader) has only very dense covering trichomes. All three Ambrosia species have secretory structures in their leaf midrib. A. confertiflora, the most problematic invasive plant in Israel, had a ten times higher volatiles content than the other two species. In A. confertiflora, the most abundant volatiles were chrysanthenone (25.5%), borneol (18%), germacrene D and (E)-caryophyllene (both around 12%). In A. tenuifolia, the most abundant volatiles were ß-myrcene (32.9%), (2E)-hexenal (13%) and 1,8-cineole (11.7%). In A. grayi, the most abundant volatiles were ß-myrcene (17.9%), germacrene D (17.8%) and limonene (14%). The three examined species have distinct trichome types and metabolic profiles. Non-glandular trichomes show structural diversification between species and are a good descriptive character. Considering the anthropocentric significance of this highly problematic genus, the current study provides tools for easier identification of ragweed species.


Assuntos
Ambrosia , Asteraceae , Asteraceae/metabolismo , Monoterpenos Acíclicos/análise , Monoterpenos Acíclicos/metabolismo , Tricomas/metabolismo , Folhas de Planta/metabolismo
6.
J Exp Bot ; 73(2): 555-570, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-34129033

RESUMO

Galling insects gain food and shelter by inducing specialized anatomical structures in their plant hosts. Such galls often accumulate plant defensive metabolites protecting the inhabiting insects from predation. We previously found that, despite a marked natural chemopolymorphism in natural populations of Pistacia palaestina, the monoterpene content in Baizongia pistaciae-induced galls is substantially higher than in leaves of their hosts. Here we show a general up-regulation of key structural genes in both the plastidial and cytosolic terpene biosynthetic pathways in galls as compared with non-colonized leaves. Novel prenyltransferases and terpene synthases were functionally expressed in Escherichia coli to reveal their biochemical function. Individual Pistacia trees exhibiting chemopolymorphism in terpene compositions displayed differential up-regulation of selected terpene synthase genes, and the metabolites generated by their gene products in vitro corresponded to the monoterpenes accumulated by each tree. Our results delineate molecular mechanisms responsible for the formation of enhanced monoterpene in galls and the observed intraspecific monoterpene chemodiversity displayed in P. palaestina. We demonstrate that gall-inhabiting aphids transcriptionally reprogram their host terpene pathways by up-regulating tree-specific genes, boosting the accumulation of plant defensive compounds for the protection of colonizing insects.


Assuntos
Afídeos , Pistacia , Animais , Tumores de Planta , Terpenos , Regulação para Cima
7.
Plant J ; 104(1): 226-240, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32645754

RESUMO

Flowers are the most vulnerable plant organ to infection by the necrotrophic fungus Botrytis cinerea. Here we show that pre-treatment of chrysanthemum (Chrysanthemum morifolium) flowers with phenylalanine (Phe) significantly reduces their susceptibility to B. cinerea. To comprehend how Phe treatment induces resistance, we monitored the dynamics of metabolites (by GC/LC-MS) and transcriptomes (by RNAseq) in flowers after Phe treatment and B. cinerea infection. Phe treatment resulted in accumulation of 3-phenyllactate and benzaldehyde, and in particular induced the expression of genes related to Ca2+ signaling and receptor kinases, implicating an induction of the defense response. Interestingly, the main effects of Phe treatment were observed in flowers exposed to B. cinerea infection, stabilizing the global fluctuations in the levels of metabolites and transcripts while reducing susceptibility to the fungus. We suggest that Phe-induced resistance is associated to cell priming, enabling rapid and targeted reprogramming of cellular defense responses to resist disease development. After Phe pre-treatment, the levels of the anti-fungal volatiles phenylacetaldehyde and eugenol were maintained and the level of coniferin, a plausible monolignol precursor in cell wall lignification, was strongly increased. In addition, Phe pre-treatment reduced ROS generation, prevented ethylene emission, and caused changes in the expression of a minor number of genes related to cell wall biogenesis, encoding the RLK THESEUS1, or involved in Ca2+ and hormonal signaling processes. Our findings point to Phe pre-treatment as a potential orchestrator of a broad-spectrum defense response which may not only provide an ecologically friendly pest control strategy but also offers a promising way of priming plants to induce defense responses against B. cinerea.


Assuntos
Botrytis , Chrysanthemum/fisiologia , Flores/fisiologia , Fenilalanina/fisiologia , Doenças das Plantas/imunologia , Chrysanthemum/imunologia , Chrysanthemum/microbiologia , Etilenos/metabolismo , Flores/imunologia , Fenilalanina/metabolismo , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/metabolismo , Espécies Reativas de Oxigênio
8.
Physiol Plant ; 172(1): 19-28, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33161590

RESUMO

Lisianthus (Eustoma grandiflorum), a leading plant in the cut flower industry, is scentless. Here we show that lisianthus flowers have potential to produce several fragrant benzenoid-phenylpropanoids when substrate availability is not limited. To enable hyperaccumulation of substrates for the production of volatile benzenoid-phenylpropanoids, lisianthus commercial hybrid "Excalibur Pink" was transformed via floral dipping with a feedback-insensitive Escherichia coli DAHP synthase (AroG*) and Clarkia breweri benzyl alcohol acetyltransferase (BEAT), under constitutive promoters. The T1 progeny of "Excalibur Pink" plants segregated into four visual phenotypes, with pink or white colored petals and multiple or single petal layers. Interestingly, transformation with AroG* and BEAT caused no significant effect in the pigment composition among phenotypes, but did increase the levels of down-stream fragrant volatile benzenoids. All the transgenic lines exclusively accumulated methyl benzoate, a fragrant benzenoid, either in their petals or leaves. Furthermore, feeding with benzyl alcohol resulted in the accumulation of two novel benzenoids, benzyl acetate (the product of BEAT) and benzoate, as well as a dramatic increase in the concentrations of additional benzenoid-phenylpropanoid volatiles. Presumably, the degree of benzaldehyde overproduction after benzyl alcohol feeding in both leaves and flowers revealed their reverse conversion in lisianthus plants. These findings demonstrate the concealed capability of lisianthus plants to produce a wide array of fragrant benzenoid-phenylpropanoids, given high substrate concentrations, which could in turn open opportunities for future scent engineering.


Assuntos
Flores , Odorantes , Pigmentação , Folhas de Planta , Plantas
9.
J Sci Food Agric ; 100(4): 1405-1417, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31646647

RESUMO

BACKGROUND: The full flavor of grape berries is determined by the interaction of sugars, acids, volatile compounds, and other berry properties, such as astringency. Sugars and acids are important for berry taste, whereas volatile compounds are important for the unique berry flavors, e.g., monoterpenes for the Muscat varieties. RESULTS: We explored the basis for 'fruity' flavor perception in table grapes. Samples were collected from 134 new table grape lines and commercial varieties and tested chemically for their volatile profiles and organoleptically by tasting panels. At the sensory level, flavor impression was strongly correlated with berry preference, whereas among 'fruity', 'neutral', 'herbaceous,' and 'Muscat', only the 'fruity' flavor was correlated with berry preference. At the chemical level, 114 volatile compounds were detected in the 81 breeding lines and cultivars examined, and grouped into 'core' and 'unique' categories. The typical berry flavor seemed to depend on the major volatile aldehydes - 1-hexanal and (E)-2-hexenal - accounting for up to an average 85% of the berry's core volatile concentration. We found four volatile compounds - α-bergamotene, geranyl formate, aristolene and α-penansinene - previously undetected, to our knowledge, in fresh grape berries. CONCLUSIONS: High 'fruity' flavor scores were related to three independent factors: (i) presence of unique volatile compounds, such as the sesquiterpene α-copaene, (ii) higher total concentration of volatile compounds, (iii) optimal maturity associated to high total soluble solids (TSS) levels, interacting with berry volatile composition. These combined sensory and analytical data on the flavor of table grapes improve our understanding of the complex interface between chemical and sensory perception in fruit. © 2019 Society of Chemical Industry.


Assuntos
Aromatizantes/química , Extratos Vegetais/química , Vitis/química , Compostos Orgânicos Voláteis/química , Aromatizantes/metabolismo , Frutas/química , Frutas/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Extratos Vegetais/metabolismo , Vitis/metabolismo , Compostos Orgânicos Voláteis/metabolismo
10.
Plant J ; 94(1): 169-191, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29385635

RESUMO

Combined quantitative trait loci (QTL) and expression-QTL (eQTL) mapping analysis was performed to identify genetic factors affecting melon (Cucumis melo) fruit quality, by linking genotypic, metabolic and transcriptomic data from a melon recombinant inbred line (RIL) population. RNA sequencing (RNA-Seq) of fruit from 96 RILs yielded a highly saturated collection of > 58 000 single-nucleotide polymorphisms, identifying 6636 recombination events that separated the genome into 3663 genomic bins. Bin-based QTL analysis of 79 RILs and 129 fruit-quality traits affecting taste, aroma and color resulted in the mapping of 241 QTL. Thiol acyltransferase (CmThAT1) gene was identified within the QTL interval of its product, S-methyl-thioacetate, a key component of melon fruit aroma. Metabolic activity of CmThAT1-encoded protein was validated in bacteria and in vitro. QTL analysis of flesh color intensity identified a candidate white-flesh gene (CmPPR1), one of two major loci determining fruit flesh color in melon. CmPPR1 encodes a member of the pentatricopeptide protein family, involved in processing of RNA in plastids, where carotenoid and chlorophyll pigments accumulate. Network analysis of > 12 000 eQTL mapped for > 8000 differentially expressed fruit genes supported the role of CmPPR1 in determining the expression level of plastid targeted genes. We highlight the potential of RNA-Seq-based QTL analysis of small to moderate size, advanced RIL populations for precise marker-assisted breeding and gene discovery. We provide the following resources: a RIL population genotyped with a unique set of SNP markers, confined genomic segments that harbor QTL governing 129 traits and a saturated set of melon eQTLs.


Assuntos
Mapeamento Cromossômico , Cucurbitaceae/genética , Frutas/genética , Locos de Características Quantitativas/genética , Cucurbitaceae/metabolismo , Qualidade dos Alimentos , Frutas/metabolismo , Genes de Plantas/genética , Genes de Plantas/fisiologia , Ligação Genética , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de RNA
11.
Proc Natl Acad Sci U S A ; 113(47): E7619-E7628, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27821754

RESUMO

The consumption of sweeteners, natural as well as synthetic sugars, is implicated in an array of modern-day health problems. Therefore, natural nonsugar sweeteners are of increasing interest. We identify here the biosynthetic pathway of the sweet triterpenoid glycoside mogroside V, which has a sweetening strength of 250 times that of sucrose and is derived from mature fruit of luo-han-guo (Siraitia grosvenorii, monk fruit). A whole-genome sequencing of Siraitia, leading to a preliminary draft of the genome, was combined with an extensive transcriptomic analysis of developing fruit. A functional expression survey of nearly 200 candidate genes identified the members of the five enzyme families responsible for the synthesis of mogroside V: squalene epoxidases, triterpenoid synthases, epoxide hydrolases, cytochrome P450s, and UDP-glucosyltransferases. Protein modeling and docking studies corroborated the experimentally proven functional enzyme activities and indicated the order of the metabolic steps in the pathway. A comparison of the genomic organization and expression patterns of these Siraitia genes with the orthologs of other Cucurbitaceae implicates a strikingly coordinated expression of the pathway in the evolution of this species-specific and valuable metabolic pathway. The genomic organization of the pathway genes, syntenously preserved among the Cucurbitaceae, indicates, on the other hand, that gene clustering cannot account for this novel secondary metabolic pathway.


Assuntos
Vias Biossintéticas , Cucurbitaceae/crescimento & desenvolvimento , Proteínas de Plantas/genética , Triterpenos/metabolismo , Cucurbitaceae/genética , Cucurbitaceae/metabolismo , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Epóxido Hidrolases/química , Epóxido Hidrolases/genética , Epóxido Hidrolases/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Glucosiltransferases/química , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Modelos Moleculares , Simulação de Acoplamento Molecular , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Análise de Sequência de DNA/métodos , Esqualeno Mono-Oxigenase/química , Esqualeno Mono-Oxigenase/genética , Esqualeno Mono-Oxigenase/metabolismo
12.
Plant Physiol ; 173(1): 376-389, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27837090

RESUMO

ß-Carotene adds nutritious value and determines the color of many fruits, including melon (Cucumis melo). In melon mesocarp, ß-carotene accumulation is governed by the Orange gene (CmOr) golden single-nucleotide polymorphism (SNP) through a yet to be discovered mechanism. In Arabidopsis (Arabidopsis thaliana), OR increases carotenoid levels by posttranscriptionally regulating phytoene synthase (PSY). Here, we identified a CmOr nonsense mutation (Cmor-lowß) that lowered fruit ß-carotene levels with impaired chromoplast biogenesis. Cmor-lowß exerted a minimal effect on PSY transcripts but dramatically decreased PSY protein levels and enzymatic activity, leading to reduced carotenoid metabolic flux and accumulation. However, the golden SNP was discovered to not affect PSY protein levels and carotenoid metabolic flux in melon fruit, as shown by carotenoid and immunoblot analyses of selected melon genotypes and by using chemical pathway inhibitors. The high ß-carotene accumulation in golden SNP melons was found to be due to a reduced further metabolism of ß-carotene. This was revealed by genetic studies with double mutants including carotenoid isomerase (yofi), a carotenoid-isomerase nonsense mutant, which arrests the turnover of prolycopene. The yofi F2 segregants accumulated prolycopene independently of the golden SNP Moreover, Cmor-lowß was found to inhibit chromoplast formation and chloroplast disintegration in fruits from 30 d after anthesis until ripening, suggesting that CmOr regulates the chloroplast-to-chromoplast transition. Taken together, our results demonstrate that CmOr is required to achieve PSY protein levels to maintain carotenoid biosynthesis metabolic flux but that the mechanism of the CmOr golden SNP involves an inhibited metabolism downstream of ß-carotene to dramatically affect both carotenoid content and plastid fate.


Assuntos
Carotenoides/metabolismo , Cucumis melo/metabolismo , Análise do Fluxo Metabólico , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Vias Biossintéticas/genética , Cloroplastos/metabolismo , Cucumis melo/genética , Ecótipo , Epistasia Genética , Metanossulfonato de Etila , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Geranil-Geranildifosfato Geranil-Geraniltransferase/metabolismo , Modelos Biológicos , Mutação/genética , Fenótipo , Pigmentação/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
13.
Plant J ; 88(1): 82-94, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27288653

RESUMO

Isoprenoids consist of a large class of compounds that are present in all living organisms. They are derived from the 5C building blocks isopentenyl diphosphate (IDP) and its isomer dimethylallyl diphosphate (DMADP). In plants, IDP is synthesized in the cytoplasm from mevalonic acid via the MVA pathway, and in plastids from 2-C-methyl-d-erythritol-4-phosphate through the MEP pathway. The enzyme IDP isomerase (IDI) catalyzes the interconversion between IDP and DMADP. Most plants contain two IDI enzymes, the functions of which are characteristically compartmentalized in the cells. Carotenoids are isoprenoids that play essential roles in photosynthesis and provide colors to flowers and fruits. They are synthesized in the plastids via the MEP pathway. Fruits of Solanum lycopersicum (tomato) accumulate high levels of the red carotene lycopene. We have identified mutations in tomato that reduce overall carotenoid accumulation in fruits. Four alleles of a locus named FRUIT CAROTENOID DEFICIENT 1 (fcd1) were characterized. Map-based cloning of fcd1 indicated that this gene encodes the plastidial enzyme IDI1. Lack of IDI1 reduced the concentration of carotenoids in fruits, flowers and cotyledons, but not in mature leaves. These results indicate that the plastidial IDI plays an important function in carotenoid biosynthesis, thus highlighting its role in optimizing the ratio between IDP and DMADP as precursors for different downstream isoprenoid pathways.


Assuntos
Isomerases de Ligação Dupla Carbono-Carbono/metabolismo , Carotenoides/biossíntese , Frutas/metabolismo , Solanum lycopersicum/metabolismo , Isomerases de Ligação Dupla Carbono-Carbono/genética , Frutas/genética , Hemiterpenos/metabolismo , Solanum lycopersicum/genética , Mutação , Compostos Organofosforados/metabolismo
14.
J Chem Ecol ; 43(2): 143-152, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28108840

RESUMO

Certain insect species can induce gall formation on numerous plants species. Although the mechanism of gall development is largely unknown, it is clear that insects manipulate their hosts' anatomy, physiology, and chemistry for their own benefit. It is well known that insect-induced galls often contain vast amounts of plant defensive compounds as compared to non-colonized tissues, but it is not clear if defensive compounds can be produced in situ in the galled tissues. To answer this question, we analyzed terpene accumulation patterns and possible independent biosynthetic potential of galls induced by the aphid Baizongia pistaciae L. on the terminal buds of Pistacia palaestina Boiss. We compared monoterpene levels and monoterpene synthase enzyme activity in galls and healthy leaves from individual trees growing in a natural setting. At all developmental stages, monoterpene content and monoterpene synthase activity were consistently (up to 10 fold on a fresh weight basis) higher in galls than in intact non-colonized leaves. A remarkable tree to tree variation in the products produced in vitro from the substrate geranyl diphosphate by soluble protein extracts derived from individual trees was observed. Furthermore, galls and leaves from the same trees displayed enhanced and often distinct biosynthetic capabilities. Our results clearly indicate that galls possess independent metabolic capacities to produce and accumulate monoterpenes as compared to leaves. Our study indicates that galling aphids manipulate the enzymatic machinery of their host plant, intensifying their own defenses against natural enemies.


Assuntos
Afídeos/fisiologia , Interações Hospedeiro-Parasita , Monoterpenos/metabolismo , Pistacia/parasitologia , Folhas de Planta/parasitologia , Tumores de Planta/parasitologia , Animais , Monoterpenos/análise , Pistacia/química , Pistacia/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo
15.
Plant J ; 82(2): 267-79, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25754094

RESUMO

The flesh color of Cucumis melo (melon) is genetically determined, and can be white, light green or orange, with ß-carotene being the predominant pigment. We associated carotenoid accumulation in melon fruit flesh with polymorphism within CmOr, a homolog of the cauliflower BoOr gene, and identified CmOr as the previously described gf locus in melon. CmOr was found to co-segregate with fruit flesh color, and presented two haplotypes (alleles) in a broad germplasm collection, one being associated with orange flesh and the second being associated with either white or green flesh. Allelic variation of CmOr does not affect its transcription or protein level. The variation also does not affect its plastid subcellular localization. Among the identified single nucleotide polymorphisms (SNPs) between CmOr alleles in orange versus green/white-flesh fruit, a single SNP causes a change of an evolutionarily highly conserved arginine to histidine in the CmOr protein. Functional analysis of CmOr haplotypes in an Arabidopsis callus system confirmed the ability of the CmOr orange haplotype to induce ß-carotene accumulation. Site-directed mutagenesis of the CmOr green/white haplotype to change the CmOR arginine to histidine triggered ß-carotene accumulation. The identification of the 'golden' SNP in CmOr, which is responsible for the non-orange and orange melon fruit phenotypes, provides new tools for studying the Or mechanism of action, and suggests genome editing of the Or gene for nutritional biofortification of crops.


Assuntos
Carotenoides/genética , Cucumis melo/genética , Frutas/genética , Proteínas de Plantas/genética , Carotenoides/metabolismo , Cucumis melo/metabolismo , Frutas/metabolismo , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Pigmentação , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único/genética
16.
Plant Physiol ; 169(3): 1683-97, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26157114

RESUMO

Bay laurel (Laurus nobilis) is an agriculturally and economically important dioecious tree in the basal dicot family Lauraceae used in food and drugs and in the cosmetics industry. Bay leaves, with their abundant monoterpenes and sesquiterpenes, are used to impart flavor and aroma to food, and have also drawn attention in recent years because of their potential pharmaceutical applications. To identify terpene synthases (TPSs) involved in the production of these volatile terpenes, we performed RNA sequencing to profile the transcriptome of L. nobilis leaves. Bioinformatic analysis led to the identification of eight TPS complementary DNAs. We characterized the enzymes encoded by three of these complementary DNAs: a monoterpene synthase that belongs to the TPS-b clade catalyzes the formation of mostly 1,8-cineole; a sesquiterpene synthase belonging to the TPS-a clade catalyzes the formation of mainly cadinenes; and a diterpene synthase of the TPS-e/f clade catalyzes the formation of geranyllinalool. Comparison of the sequences of these three TPSs indicated that the TPS-a and TPS-b clades of the TPS gene family evolved early in the evolution of the angiosperm lineage, and that geranyllinalool synthase activity is the likely ancestral function in angiosperms of genes belonging to an ancient TPS-e/f subclade that diverged from the kaurene synthase gene lineages before the split of angiosperms and gymnosperms.


Assuntos
Alquil e Aril Transferases/genética , Laurus/enzimologia , Terpenos/metabolismo , Alquil e Aril Transferases/metabolismo , Sequência de Bases , Cicloexanóis/metabolismo , DNA Complementar/genética , Eucaliptol , Evolução Molecular , Genes Reporter , Liases Intramoleculares/genética , Liases Intramoleculares/metabolismo , Laurus/química , Laurus/genética , Modelos Moleculares , Dados de Sequência Molecular , Monoterpenos/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA de Plantas/química , RNA de Plantas/genética , Proteínas Recombinantes , Análise de Sequência de RNA
17.
Plant Physiol ; 169(3): 1714-26, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26358418

RESUMO

The flavonoids are phenylpropanoid-derived metabolites that are ubiquitous in plants, playing many roles in growth and development. Recently, we observed that fruit rinds of yellow casaba muskmelons (Cucumis melo 'Inodorous Group') accumulate naringenin chalcone, a yellow flavonoid pigment. With RNA-sequencing analysis of bulked segregants representing the tails of a population segregating for naringenin chalcone accumulation followed by fine mapping and genetic transformation, we identified a Kelch domain-containing F-box protein coding (CmKFB) gene that, when expressed, negatively regulates naringenin chalcone accumulation. Additional metabolite analysis indicated that downstream flavonoids are accumulated together with naringenin chalcone, whereas CmKFB expression diverts the biochemical flux toward coumarins and general phenylpropanoids. These results show that CmKFB functions as a posttranscriptional regulator that diverts flavonoid metabolic flux.


Assuntos
Chalconas/metabolismo , Cucumis melo/genética , Proteínas F-Box/genética , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas , Sequência de Bases , Cucumis melo/citologia , Cucumis melo/metabolismo , Proteínas F-Box/metabolismo , Frutas/citologia , Frutas/genética , Frutas/metabolismo , Expressão Gênica , Loci Gênicos/genética , Análise do Fluxo Metabólico , Dados de Sequência Molecular , Fenótipo , Filogenia , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Propanóis/metabolismo , Análise de Sequência de DNA
18.
Amino Acids ; 48(5): 1209-20, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26832171

RESUMO

Ephedra sinica Stapf (Ephedraceae) is a broom-like shrub cultivated in arid regions of China, Korea and Japan. This plant accumulates large amounts of the ephedrine alkaloids in its aerial tissues. These analogs of amphetamine mimic the actions of adrenaline and stimulate the sympathetic nervous system. While much is known about their pharmacological properties, the mechanisms by which they are synthesized remain largely unknown. A functional genomics platform was established to investigate their biosynthesis. Candidate enzymes were obtained from an expressed sequence tag collection based on similarity to characterized enzymes with similar functions. Two aromatic aminotransferases, EsAroAT1 and EsAroAT2, were characterized. The results of quantitative reverse transcription-polymerase chain reaction indicated that both genes are expressed in young stem tissue, where ephedrine alkaloids are synthesized, and in mature stem tissue. Nickel affinity-purified recombinant EsAroAT1 exhibited higher catalytic activity and was more homogeneous than EsAroAT2 as determined by size-exclusion chromatography. EsAroAT1 was highly active as a tyrosine aminotransferase with α-ketoglutarate followed by α-ketomethylthiobutyrate and very low activity with phenylpyruvate. In the reverse direction, catalytic efficiency was similar for the formation of all three aromatic amino acids using L-glutamate. Neither enzyme accepted putative intermediates in the ephedrine alkaloid biosynthetic pathway, S-phenylacetylcarbinol or 1-phenylpropane-1,2-dione, as substrates.


Assuntos
Ephedra sinica/enzimologia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Transaminases/química , Transaminases/metabolismo , Biocatálise , Estabilidade Enzimática , Ephedra sinica/química , Ephedra sinica/genética , Ephedra sinica/metabolismo , Efedrina/metabolismo , Cinética , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Transaminases/genética , Transaminases/isolamento & purificação
19.
Mycorrhiza ; 26(4): 287-97, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26563200

RESUMO

The ectendomycorrhizal fungus Terfezia boudieri is known to secrete auxin. While some of the effects of fungal auxin on the plant root system have been described, a comprehensive understanding is still lacking. A dual culture system to study pre mycorrhizal signal exchange revealed previously unrecognized root-fungus interaction mediated by the fungal auxin. The secreted fungal auxin induced negative taproot gravitropism, attenuated taproot growth rate, and inhibited initial host development. Auxin also induced expression of Arabidopsis carriers AUX1 and PIN1, both of which are involved in the gravitropic response. Exogenous application of auxin led to a root phenotype, which fully mimicked that induced by ectomycorrhizal fungi. Co-cultivation of Arabidopsis auxin receptor mutants tir1-1, tir1-1 afb2-3, tir1-1 afb1-3 afb2-3, and tir1-1 afb2-3 afb3-4 with Terfezia confirmed that auxin induces the observed root phenotype. The finding that auxin both induces taproot deviation from the gravity axis and coordinates growth rate is new. We propose a model in which the fungal auxin induces horizontal root development, as well as the coordination of growth rates between partners, along with the known auxin effect on lateral root induction that increases the availability of accessible sites for colonization at the soil plane of fungal spore abundance. Thus, the newly observed responses described here of the root to Terfezia contribute to a successful encounter between symbionts.


Assuntos
Arabidopsis/microbiologia , Ascomicetos/metabolismo , Cistaceae/metabolismo , Ácidos Indolacéticos/metabolismo , Micorrizas/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia , Transdução de Sinais , Simbiose
20.
BMC Plant Biol ; 15: 274, 2015 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-26553015

RESUMO

BACKGROUND: Melon fruit flesh color is primarily controlled by the "golden" single nucleotide polymorhism of the "Orange" gene, CmOr, which dominantly triggers the accumulation of the pro-vitamin A molecule, ß-carotene, in the fruit mesocarp. The mechanism by which CmOr operates is not fully understood. To identify cellular and metabolic processes associated with CmOr allelic variation, we compared the transcriptome of bulks of developing fruit of homozygous orange and green fruited F3 families derived from a cross between orange and green fruited parental lines. RESULTS: Pooling together F3 families that share same fruit flesh color and thus the same CmOr allelic variation, normalized traits unrelated to CmOr allelic variation. RNA sequencing analysis of these bulks enabled the identification of differentially expressed genes. These genes were clustered into functional groups. The relatively enriched functional groups were those involved in photosynthesis, RNA and protein regulation, and response to stress. CONCLUSIONS: The differentially expressed genes and the enriched processes identified here by bulk segregant RNA sequencing analysis are likely part of the regulatory network of CmOr. Our study demonstrates the resolution power of bulk segregant RNA sequencing in identifying genes related to commercially important traits and provides a useful tool for better understanding the mode of action of CmOr gene in the mediation of carotenoid accumulation.


Assuntos
Cucumis melo/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Transcriptoma , beta Caroteno/metabolismo , Cucumis melo/metabolismo , Frutas/metabolismo , Dados de Sequência Molecular , Proteínas de Plantas/metabolismo , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA