Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Oecologia ; 176(4): 1187-97, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25234376

RESUMO

Resistance, recovery and resilience are three important properties of ecological stability, but they have rarely been studied in semi-arid grasslands under global change. We analyzed data from a field experiment conducted in a native grassland in northern China to explore the effects of experimentally enhanced precipitation and N deposition on both absolute and relative measures of community resistance, recovery and resilience--calculated in terms of community cover--after a natural drought. For both absolute and relative measures, communities with precipitation enhancement showed higher resistance and lower recovery, but no change in resilience compared to communities with ambient precipitation in the semi-arid grassland. The manipulated increase in N deposition had little effect on these community stability metrics except for decreased community resistance. The response patterns of these stability metrics to alterations in precipitation and N are generally consistent at community, functional group and species levels. Contrary to our expectations, structural equation modeling revealed that water-driven community resistance and recovery result mainly from changes in community species asynchrony rather than species diversity in the semi-arid grassland. These findings suggest that changes in precipitation regimes may have significant impacts on the response of water-limited ecosystems to drought stress under global change scenarios.


Assuntos
Adaptação Fisiológica , Secas , Pradaria , Magnoliopsida/fisiologia , Nitrogênio/metabolismo , Chuva , Água , Biodiversidade , China , Clima , Fertilizantes , Magnoliopsida/crescimento & desenvolvimento , Magnoliopsida/metabolismo , Poaceae/metabolismo , Poaceae/fisiologia , Estresse Fisiológico
2.
Environ Manage ; 52(4): 821-36, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23887487

RESUMO

Fire is a dominant process in boreal forest landscapes and creates a spatial patch mosaic with different burn severities and age classes. Quantifying effects of vegetation and topography on burn severity provides a scientific basis on which forest fire management plans are developed to reduce catastrophic fires. However, the relative contribution of vegetation and topography to burn severity is highly debated especially under extreme weather conditions. In this study, we hypothesized that relationships of vegetation and topography to burn severity vary with fire size. We examined this hypothesis in a boreal forest landscape of northeastern China by computing the burn severity of 24 fire patches as the difference between the pre- and post-fire Normalized Difference Vegetation Index obtained from two Landsat TM images. The vegetation and topography to burn severity relationships were evaluated at three fire-size levels of small (<100 ha, n = 12), moderate (100-1,000 ha, n = 9), and large (>1,000 ha, n = 3). Our results showed that vegetation and topography to burn severity relationships were fire-size-dependent. The burn severity of small fires was primary controlled by vegetation conditions (e.g., understory cover), and the burn severity of large fires was strongly influenced by topographic conditions (e.g., elevation). For moderate fires, the relationships were complex and indistinguishable. Our results also indicated that the pattern trends of relative importance for both vegetation and topography factors were not dependent on fire size. Our study can help managers to design fire management plans according to vegetation characteristics that are found important in controlling burn severity and prioritize management locations based on the relative importance of vegetation and topography.


Assuntos
Incêndios , Geografia , Plantas , China , Tecnologia de Sensoriamento Remoto
3.
Environ Manage ; 52(3): 612-20, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23793545

RESUMO

Monitoring the dynamics of forest biomass at various spatial scales is important for better understanding the terrestrial carbon cycle as well as improving the effectiveness of forest policies and forest management activities. In this article, field data and Landsat image data acquired in 1999 and 2007 were utilized to quantify spatiotemporal changes of forest biomass for Dongsheng Forestry Farm in Changbai Mountain region of northeastern China. We found that Landsat TM band 4 and Difference Vegetation Index with a 3 × 3 window size were the best predictors associated with forest biomass estimations in the study area. The inverse regression model with Landsat TM band 4 predictor was found to be the best model. The total forest biomass in the study area decreased slightly from 2.77 × 10(6) Mg in 1999 to 2.73 × 10(6) Mg in 2007, which agreed closely with field-based model estimates. The area of forested land increased from 17.9 × 10(3) ha in 1999 to 18.1 × 10(3) ha in 2007. The stabilization of forest biomass and the slight increase of forested land occurred in the period following implementations of national forest policies in China in 1999. The pattern of changes in both forest biomass and biomass density was altered due to different management regimes adopted in light of those policies. This study reveals the usefulness of the remote sensing-based approach for detecting and monitoring quantitative changes in forest biomass at a landscape scale.


Assuntos
Biomassa , Agricultura Florestal/legislação & jurisprudência , Tecnologia de Sensoriamento Remoto , China , Monitoramento Ambiental
4.
Environ Manage ; 48(6): 1066-78, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21678024

RESUMO

In this article, we introduce China's major forest types and discuss the historical development of forest management in China, including actions taken over the last decade toward achieving SMF. Major challenges are identified, and a strategy for SFM implementation in China is presented. China's forests consist of a wide variety of types with distinctive distributional patterns shaped by complex topography and multiple climate regimes. How to manage this wide array of forest resources has challenged forest managers and policy-makers since the founding of the country. Excessive exploitation of China's forest resources from the 1950s to the late 1990s contributed to environmental problems and calamities, such as floods, soil erosion, and desertification. At the start of the new millennium, the Chinese government decided to shift its emphasis from timber production towards the achievement of sustainable forest management (SFM). With a series of endeavors such as the implementation of the "Six Key Forestry Projects" and the reform of forest tenure policies, and the adoption of a classification system for China's forests, a beginning has been made at reversing the trend of environmental degradation that occurred throughout the latter half of the last century. At the same time, huge challenges remain to be tackled for the development of forestry in China.


Assuntos
Agricultura Florestal/história , Árvores/fisiologia , China , Clima , Política Ambiental , Agricultura Florestal/tendências , Geografia , História do Século XX , História do Século XXI , Árvores/classificação
5.
Sci Rep ; 6: 18490, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26725308

RESUMO

Unlike the virgin forest in the Changbaishan Nature Reserve in northeastern China, little research on a landscape scale has been conducted on secondary forests in the region under conditions of a warming climate. This research was undertaken in the upper Hun River region where the vegetation is representative of the typical secondary forest of northeastern China. The spatially explicit forest landscape model LANDIS was utilized to simulate the responses of forest restoration dynamics to anthropogenic disturbance (planting and harvesting) and evaluate the difference of the restoration process under continuation of current climatic conditions and climate warming. The results showed that: (1) The interaction of planting and harvesting has organizational scale effects on the forest. The combination of planting and harvesting policies has significant effects on the overall forest but not on individual species. (2) The area expansion of the historically dominant species Pinus koraiensis is less under climate warming than under continuation of current climatic conditions. These suggests that we should carefully take historically dominant species as the main focus for forest restoration, especially when they are near their natural distribution boundary, because they are probably less capable of successfully adapting to climate change.


Assuntos
Mudança Climática , Florestas , Pinus/fisiologia , China , Conservação dos Recursos Naturais , Agricultura Florestal
6.
PLoS One ; 9(2): e89572, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24586881

RESUMO

Accurate estimates of forest carbon storage and changes in storage capacity are critical for scientific assessment of the effects of forest management on the role of forests as carbon sinks. Up to now, several studies reported forest biomass carbon (FBC) in Liaoning Province based on data from China's Continuous Forest Inventory, however, their accuracy were still not known. This study compared estimates of FBC in Liaoning Province derived from different methods. We found substantial variation in estimates of FBC storage for young and middle-age forests. For provincial forests with high proportions in these age classes, the continuous biomass expansion factor method (CBM) by forest type with age class is more accurate and therefore more appropriate for estimating forest biomass. Based on the above approach designed for this study, forests in Liaoning Province were found to be a carbon sink, with carbon stocks increasing from 63.0 TgC in 1980 to 120.9 TgC in 2010, reflecting an annual increase of 1.9 TgC. The average carbon density of forest biomass in the province has increased from 26.2 Mg ha(-1) in 1980 to 31.0 Mg ha(-1) in 2010. While the largest FBC occurred in middle-age forests, the average carbon density decreased in this age class during these three decades. The increase in forest carbon density resulted primarily from the increased area and carbon storage of mature forests. The relatively long age interval in each age class for slow-growing forest types increased the uncertainty of FBC estimates by CBM-forest type with age class, and further studies should devote more attention to the time span of age classes in establishing biomass expansion factors for use in CBM calculations.


Assuntos
Biomassa , Carbono/análise , Florestas , Biodiversidade , China
7.
PLoS One ; 8(8): e72201, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23977252

RESUMO

The northeastern forest region of China is an important component of total temperate and boreal forests in the northern hemisphere. But how carbon (C) pool size and distribution varies among tree, understory, forest floor and soil components, and across stand ages remains unclear. To address this knowledge gap, we selected three major temperate and two major boreal forest types in northeastern (NE) China. Within both forest zones, we focused on four stand age classes (young, mid-aged, mature and over-mature). Results showed that total C storage was greater in temperate than in boreal forests, and greater in older than in younger stands. Tree biomass C was the main C component, and its contribution to the total forest C storage increased with increasing stand age. It ranged from 27.7% in young to 62.8% in over-mature stands in boreal forests and from 26.5% in young to 72.8% in over-mature stands in temperate forests. Results from both forest zones thus confirm the large biomass C storage capacity of old-growth forests. Tree biomass C was influenced by forest zone, stand age, and forest type. Soil C contribution to total forest C storage ranged from 62.5% in young to 30.1% in over-mature stands in boreal and from 70.1% in young to 26.0% in over-mature in temperate forests. Thus soil C storage is a major C pool in forests of NE China. On the other hand, understory and forest floor C jointly contained less than 13% and <5%, in boreal and temperate forests respectively, and thus play a minor role in total forest C storage in NE China.


Assuntos
Ciclo do Carbono , Carbono/química , Solo/química , Árvores/química , Altitude , Biomassa , China , Ecossistema , Florestas , Temperatura
8.
PLoS One ; 7(6): e39058, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22723930

RESUMO

Balancing forest harvesting and restoration is critical for forest ecosystem management. In this study, we used LANDIS, a spatially explicit forest landscape model, to evaluate the effects of 21 alternative forest management initiatives which were drafted for forests in the upstream region of the Hun River in northeastern China. These management initiatives included a wide range of planting and harvest intensities for Pinus koraiensis, the historically dominant tree species in the region. Multivariate analysis of variance, Shannon's Diversity Index, and planting efficiency (which indicates how many cells of the target species at the final year benefit from per-cell of the planting trees) estimates were used as indicators to analyze the effects of planting and harvesting regimes on forests in the region. The results showed that the following: (1) Increased planting intensity, although augmenting the coverage of P. koraiensis, was accompanied by decreases in planting efficiency and forest diversity. (2) While selective harvesting could increase forest diversity, the abrupt increase of early succession species accompanying this method merits attention. (3) Stimulating rapid forest succession may not be a good management strategy, since the climax species would crowd out other species which are likely more adapted to future climatic conditions in the long run. In light of the above, we suggest a combination of 30% planting intensity with selective harvesting of 50% and 70% of primary and secondary timber species, respectively, as the most effective management regime in this area. In the long run this would accelerate the ultimate dominance of P. koraiensis in the forest via a more effective rate of planting, while maintaining a higher degree of forest diversity. These results are particularly useful for forest managers constrained by limited financial and labor resources who must deal with conflicts between forest harvesting and restoration.


Assuntos
Conservação dos Recursos Naturais , Rios , Árvores , Biodiversidade , China , Simulação por Computador , Ecossistema , Modelos Estatísticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA