RESUMO
This article provides an overview of our work in the area of the synthesis of polymer particles in continuous microfluidic reactors. The method includes (a) the generation of highly monodisperse monomer droplets in a microfluidic flow-focusing device and (b) in-situ solidification of these droplets by means of photopolymerization. We discuss the effect of monomer properties on the emulsification process, the effect of the polymerization rate on the production of high-quality particles, the role of the material of the microfluidic device in droplet formation, and the synthesis of particles with different shapes and compositions. We also demonstrate the production of highly ordered arrays of polymer particles achieved by photopolymerization of the dynamic lattices of monomer droplets in microfluidic channels. The article is concluded with a summary of future research directions in the production of polymer colloids in microfluidic reactors.
RESUMO
We used coupling of flow and geometric confinement to assemble emulsion droplets in two-dimensional gliding lattices with a high degree of order and symmetry. Highly monodisperse discoid droplets with circular shapes were generated in a microfluidic flow-focusing device. Originally, close-packed lattices formed from these circular discoid droplets. Progressive confinement led to the gradual deformation of the circular disks: first, they elongated in the direction parallel to the direction of flow and then transformed into hexagons. Assembly driven by the combination of flow and confinement also allowed for the formation of lattices from droplets with a bimodal size distribution. We used photopolymerization of the monomer droplets to trap the lattice structure in the solid state and produce highly periodic arrays of solid polymer disks.
RESUMO
We report a novel approach to continuous and scalable production of core-shell droplets and polymer capsules in microfluidic devices. The described method is also useful in the synthesis of polymer particles with nonspherical shapes. We used capillary instability-driven break-up of a liquid jet formed by two immiscible fluids. Precise control of emulsification of each liquid allowed for the production of highly monodisperse core-shell droplets with a predetermined diameter of cores and thickness of shells. We also achieved control over the number of cores per droplet and the location of cores in the droplet. We carried out fast throughput photopolymerization of the monomeric shells and obtained polymer particles with various shapes and morphologies, including spheres, truncated spheres and, hemispheres, and single and multicore capsules.
RESUMO
We visualized in real time electrodeposition-driven colloid crystal growth on patterned conductive surfaces. The electrode was patterned with dielectric ribs and conductive grooves; the groove width was commensurate or incommensurate with a two-dimensional colloid crystal lattice. Electrodeposition was carried out against gravity to decouple sedimentation and electrodeposition of colloid particles. Our experiments reveal the following: (i) Colloid crystal growth occurs under the action of electrohydrodynamic forces, in contrast with colloid assembly under the action of capillary forces. (ii) Confinement of the colloid arrays reduces the size of particle clusters. Small clusters easily undergo structural rearrangements to produce close-packed crystals when the groove width is commensurate or nearly commensurate with the 2D lattice. (iii) Incommensurability between the two-dimensional crystalline lattice and the groove width exceeding ca. 15% leads to the formation of non-close-packed structures and the distortion of colloid arrays.