Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Stereotact Funct Neurosurg ; 102(3): 169-178, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38657586

RESUMO

INTRODUCTION: Magnetic resonance-guided focused ultrasound (MRgFUS) is an effective treatment option for essential tremor (ET) and tremor dominant Parkinson's disease (TDPD), which is often performed with sedation or in the presence of an anesthesiologist in an effort to minimize adverse events and maximize patient comfort. This study explores the safety, feasibility, and tolerability of performing MRgFUS without an anesthesiologist. METHODS: This is a single academic center, retrospective review of 180 ET and TDPD patients who underwent MRgFUS treatment without anesthesiologist support. Patient demographics, intra-procedural treatment parameters, peri-procedural adverse events, and 3-month Clinical Rating Scale for Tremor Part B (CRST-B) scores were compared to MRgFUS studies that utilized varying degrees of anesthesia. RESULTS: There were no anesthesia related adverse events or unsuccessful treatments. There were no early treatment terminations due to patient discomfort, regardless of skull density ratio. 94.6% of patients would repeat the procedure again. The most common side effects during treatment were facial/tongue paresthesia (26.3%), followed by nausea (22.3%), dysarthria (8.6%), and scalp pain (8.0%). No anxiolytic, pain, or antihypertensive medications were administered. The most common early adverse event after MRgFUS procedure was gait imbalance (58.3%). There was a significant reduction of 83.1% (83.4% ET and 80.5% TDPD) of the mean CRST-B scores of the treated hand when comparing 3-month and baseline scores (1.8 vs. 10.9, n = 109, p < 0.0001). CONCLUSION: MRgFUS without intra-procedural anesthesiologist support is a safe, feasible, and well-tolerated option, without an increase in peri-procedural adverse events.


Assuntos
Anestesiologistas , Tremor Essencial , Doença de Parkinson , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Estudos Retrospectivos , Doença de Parkinson/terapia , Doença de Parkinson/diagnóstico por imagem , Tremor Essencial/terapia , Tremor Essencial/diagnóstico por imagem , Resultado do Tratamento , Imageamento por Ressonância Magnética/métodos , Idoso de 80 Anos ou mais , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Adulto
2.
bioRxiv ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38644998

RESUMO

Currently, there are no specific antiviral therapeutic approaches targeting Human papillomaviruses (HPVs), which cause around 5% of all human cancers. Specific antiviral reagents are particularly needed for HPV-related oropharyngeal cancers (HPV+OPCs) whose incidence is increasing and for which there are no early diagnostic tools available. We and others have demonstrated that the estrogen receptor alpha (ERalpha) is overexpressed in HPV+OPCs, compared to HPV-negative cancers in this region, and that these elevated levels are associated with an improved disease outcome. Utilizing this HPV+ specific overexpression profile, we previously demonstrated that estrogen attenuates the growth and cell viability of HPV+ keratinocytes and HPV+ cancer cells in vitro. Expansion of this work in vivo failed to replicate this sensitization. The role of stromal support from the tumor microenvironment (TME) has previously been tied to both the HPV lifecycle and in vivo therapeutic responses. Our investigations revealed that in vitro co-culture with fibroblasts attenuated HPV+ specific estrogen growth responses. Continuing to monopolize on the HPV+ specific overexpression of ERalpha, our co-culture models then assessed the suitability of the selective estrogen receptor modulators (SERMs), raloxifene and tamoxifen, and showed growth attenuation in a variety of our models to one or both of these drugs in vitro. Utilization of these SERMs in vivo closely resembled the sensitization predicted by our co-culture models. Therefore, the in vitro fibroblast co-culture model better predicts in vivo responses. We propose that utilization of our co-culture in vitro model can accelerate cancer therapeutic drug discovery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA