Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 148(20)2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34550360

RESUMO

Blood vessel growth and remodelling are essential during embryonic development and disease pathogenesis. The diversity of endothelial cells (ECs) is transcriptionally evident and ECs undergo dynamic changes in gene expression during vessel growth and remodelling. Here, we investigated the role of the histone acetyltransferase HBO1 (KAT7), which is important for activating genes during development and for histone H3 lysine 14 acetylation (H3K14ac). Loss of HBO1 and H3K14ac impaired developmental sprouting angiogenesis and reduced pathological EC overgrowth in the retinal endothelium. Single-cell RNA sequencing of retinal ECs revealed an increased abundance of tip cells in Hbo1-deficient retinas, which led to EC overcrowding in the retinal sprouting front and prevented efficient tip cell migration. We found that H3K14ac was highly abundant in the endothelial genome in both intra- and intergenic regions, suggesting that HBO1 acts as a genome organiser that promotes efficient tip cell behaviour necessary for sprouting angiogenesis. This article has an associated 'The people behind the papers' interview.


Assuntos
Histona Acetiltransferases/metabolismo , Neovascularização Patológica/metabolismo , Acetilação , Animais , Movimento Celular/fisiologia , Células Cultivadas , Desenvolvimento Embrionário/fisiologia , Células Endoteliais/metabolismo , Feminino , Histonas/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Lisina/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
2.
Nat Methods ; 18(9): 997-1012, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34341583

RESUMO

Understanding intratumoral heterogeneity-the molecular variation among cells within a tumor-promises to address outstanding questions in cancer biology and improve the diagnosis and treatment of specific cancer subtypes. Single-cell analyses, especially RNA sequencing and other genomics modalities, have been transformative in revealing novel biomarkers and molecular regulators associated with tumor growth, metastasis and drug resistance. However, these approaches fail to provide a complete picture of tumor biology, as information on cellular location within the tumor microenvironment is lost. New technologies leveraging multiplexed fluorescence, DNA, RNA and isotope labeling enable the detection of tens to thousands of cancer subclones or molecular biomarkers within their native spatial context. The expeditious growth in these techniques, along with methods for multiomics data integration, promises to yield a more comprehensive understanding of cell-to-cell variation within and between individual tumors. Here we provide the current state and future perspectives on the spatial technologies expected to drive the next generation of research and diagnostic and therapeutic strategies for cancer.


Assuntos
Perfilação da Expressão Gênica/métodos , Espectrometria de Massas/métodos , Neoplasias/diagnóstico por imagem , Proteínas/análise , Animais , Humanos , Camundongos Transgênicos , Imagem Multimodal , Neoplasias/genética , Neoplasias/patologia , Análise de Célula Única/métodos , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA