Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
Limnol Oceanogr Methods ; 20(2): 115-129, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35909413

RESUMO

Autonomous and cabled platforms are revolutionizing our understanding of ocean systems by providing 4D monitoring of the water column, thus going beyond the reach of ship-based surveys and increasing the depth of remotely sensed observations. However, very few commercially available sensors for such platforms are capable of monitoring large particulate matter (100-2000 µm) and plankton despite their important roles in the biological carbon pump and as trophic links from phytoplankton to fish. Here, we provide details of a new, commercially available scientific camera-based particle counter, specifically designed to be deployed on autonomous and cabled platforms: the Underwater Vision Profiler 6 (UVP6). Indeed, the UVP6 camera-and-lighting and processing system, while small in size and requiring low power, provides data of quality comparable to that of previous much larger UVPs deployed from ships. We detail the UVP6 camera settings, its performance when acquiring data on aquatic particles and plankton, their quality control, analysis of its recordings, and streaming from in situ acquisition to users. In addition, we explain how the UVP6 has already been integrated into platforms such as BGC-Argo floats, gliders and long-term mooring systems (autonomous platforms). Finally, we use results from actual deployments to illustrate how UVP6 data can contribute to addressing longstanding questions in marine science, and also suggest new avenues that can be explored using UVP6-equipped autonomous platforms.

2.
Opt Express ; 29(21): 34411-34426, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34809232

RESUMO

A 3-D instrument self-shading correction has been developed for the MOBY upwelling radiance measurements. This correction was tested using the 23 year time series of MOBY measurements, at the Lanai, Hawaii site. The correction is small (less than 2%) except when the sun and collectors are aligned within 20° azimuth on opposite sides of the main MOBY structure. Estimates of the correction uncertainty were made with a Monte-Carlo method and the variation of the model input parameters at this site. The correction uncertainty was generally less than 1%, but increased to 30% of the correction in the strongest shadow region.

3.
Appl Opt ; 60(28): 8676-8687, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34613093

RESUMO

We derived the angular response function (WN) for scattering sensors that automatically satisfies the normalization criterion and its corresponding weight (WT). WN's, derived for two commercial sensors, HydroScat-6 (HOBI Labs) and ECO-BB (Sea-Bird Inc.), agrees well with the Monte Carlo simulation and direct measurements. The backscattering measured for microbeads of known sizes agrees better with Mie calculation when the derived WN was applied. We deduced that the reduction of WT with increasing attenuation coefficient is related to path length attenuation and showed that this theoretically derived correction factor performs better than the default methods for the two commercial backscattering sensors. The analysis conducted in this study also leads to an estimate of uncertainty budget for the two sensors. The major uncertainty for ECO-BB is associated with its angular response function because of its wide field of view, whereas the main uncertainty for the HydrScat-6 is due to attenuation correction because of its relatively long path length.

4.
Sensors (Basel) ; 21(18)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34577421

RESUMO

Measuring the underwater light field is a key mission of the international Biogeochemical-Argo program. Since 2012, 0-250 dbar profiles of downwelling irradiance at 380, 412 and 490 nm besides photosynthetically available radiation (PAR) have been acquired across the globe every 1 to 10 days. The resulting unprecedented amount of radiometric data has been previously quality-controlled for real-time distribution and ocean optics applications, yet some issues affecting the accuracy of measurements at depth have been identified such as changes in sensor dark responsiveness to ambient temperature, with time and according to the material used to build the instrument components. Here, we propose a quality-control procedure to solve these sensor issues to make Argo radiometry data available for delayed-mode distribution, with associated error estimation. The presented protocol requires the acquisition of ancillary radiometric measurements at the 1000 dbar parking depth and night-time profiles. A test on >10,000 profiles from across the world revealed a quality-control success rate >90% for each band. The procedure shows similar performance in re-qualifying low radiometry values across diverse oceanic regions. We finally recommend, for future deployments, acquiring daily 1000 dbar measurements and one night profile per year, preferably during moonless nights and when the temperature range between the surface and 1000 dbar is the largest.


Assuntos
Óptica e Fotônica , Radiometria , Oceanos e Mares , Controle de Qualidade , Temperatura
5.
Opt Express ; 24(4): 3615-37, 2016 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-26907020

RESUMO

Monte Carlo simulations are used to compute the uncertainty associated to light backscattering measurements in turbid waters using the ECO-BB (WET Labs) and Hydroscat (HOBI Labs) scattering sensors. ECO-BB measurements provide an accurate estimate of the particulate volume scattering coefficient after correction for absorption along the short instrument pathlength. For Hydroscat measurements, because of a longer photon pathlength, both absorption and scattering effects must be corrected for. As the standard (sigma) correction potentially leads to large errors, an improved correction method is developed then validated using field inherent and apparent optical measurements carried out in turbid estuarine waters. Conclusions are also drawn to guide development of future short pathlength backscattering sensors for turbid waters.

6.
Appl Opt ; 51(17): 3853-73, 2012 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-22695665

RESUMO

We describe a methodology for determining the volume scattering function ß(ψ) of aqueous particle suspensions from measurements with a laboratory multi-angle light scattering instrument called DAWN (Wyatt Technology Corporation). In addition to absolute and angular calibration, the key component of the method is the algorithm correcting for reflection errors that reduce the percent error in ß(ψ) from as much as ~300% to <13% at backward scattering angles. The method is optimized and tested with simulations of three-dimensional radiative transfer of exact measurement geometry including the key components of the instrument and also validated experimentally using aqueous suspensions of polystyrene beads. Example applications of the method to samples of oceanic waters and comparisons of these measurements with results obtained with other light scattering instruments are presented.


Assuntos
Algoritmos , Luz , Nefelometria e Turbidimetria/instrumentação , Espalhamento a Baixo Ângulo , Suspensões/análise , Poluentes da Água/análise , Calibragem , Tamanho da Partícula , Poliestirenos , Rodaminas
7.
Appl Opt ; 49(28): 5415-36, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20885480

RESUMO

Monte Carlo simulations are used to explain and quantify the errors in inherent optical properties (IOPs) (absorption and attenuation coefficients) measured using the WET Labs AC-9 submarine spectrophotometer, and to assess correction algorithms. Simulated samples with a wide range of IOPs encountered in natural waters are examined. The relative errors on the measured absorption coefficient are in general lower than 25%, but reach up to 100% in highly scattering waters. Relative errors on attenuation and scattering coefficients are more stable, with an underestimation mainly driven by the volume scattering function. The errors in attenuation and scattering spectral shapes are small.

8.
Sci Adv ; 6(39)2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32978152

RESUMO

It is widely believed that during winter and spring, Arctic marine phytoplankton cannot grow until sea ice and snow cover start melting and transmit sufficient irradiance, but there is little observational evidence for that paradigm. To explore the life of phytoplankton during and after the polar night, we used robotic ice-avoiding profiling floats to measure ocean optics and phytoplankton characteristics continuously through two annual cycles in Baffin Bay, an Arctic sea that is covered by ice for 7 months a year. We demonstrate that net phytoplankton growth occurred even under 100% ice cover as early as February and that it resulted at least partly from photosynthesis. This highlights the adaptation of Arctic phytoplankton to extreme low-light conditions, which may be key to their survival before seeding the spring bloom.

9.
Opt Express ; 15(20): 12834-49, 2007 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-19550552

RESUMO

We report the first measurements of the scattering coefficient of natural marine particles, which extend over the near-infrared spectral region to up to 870 nm. The measurements were conducted in three different European estuaries (Gironde, Tamar and Elbe) using an in situ absorption and attenuation-meter. The observed particulate scattering coefficients varied from 1 to nearly 100 m(-1). The spectral shape in the near-infrared very closely matched a lambda(-gamma) spectral dependence, which is expected when the particle size followed a power-law distribution. The spectral slope of the scattering spectrum, gamma, spanned from 0.1 to 1.2 and showed significant regional and temporal variations. These variations were certainly related to the particle size distribution, which will have to be studied in future works. Using our near-infrared data as a reference, we assessed the use of the attenuation coefficient spectrum in the visible range to estimate the near-infrared particulate scattering slope and found values different by 10% on average.

10.
Appl Opt ; 45(36): 9210-20, 2006 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-17151762

RESUMO

Scattering phase functions derived from measured (volume-scattering meter, VSM) volume-scattering functions (VSFs) from Crimean coastal waters were found to have systematic differences in angular structure from Fournier-Forand (FF) functions with equivalent backscattering ratios. Hydrolight simulations demonstrated that differences in the angular structure of the VSF could result in variations in modeled subsurface radiance reflectances of up to +/-20%. Furthermore, differences between VSM and FF simulated reflectances were found to be nonlinear as a function of scattering and could not be explained with the single-scattering approximation. Additional radiance transfer modeling demonstrated that the contribution of multiple scattering to radiance reflectance increased exponentially from a minimum of 16% for pure water to a maximum of approximately 94% for turbid waters. Monte Carlo simulations demonstrated that multiple forward-scattering events were the dominant contributors to the generation of radiance reflectance signals for turbid waters and that angular structures in the shape of the VSF at forward angles could have a significant influence in determining reflectance signals for turbid waters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA