Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Methods ; 217: 10-17, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37348825

RESUMO

Ratiometric luminescence probes have attracted widespread attention because of their self-calibration capability. However, some defects, such as small emission shift, severe spectral overlap and poor water solubility, limit their application in the field of biological imaging. In this study, a unique luminescence probe, Ru-COU, has been developed by combining tris(bipyridine)ruthenium(II) complex with coumarin derivative through a formaldehyde-responsive linker. The probe exhibited a large emission shift (Δλ > 100 nm) and good water solubility, achieving ratiometric emission responses at 505 nm and 610 nm toward formaldehyde under acidic conditions. Besides, ratiometric luminescence imaging of formaldehyde in living cells and Alzheimer disease mouse's brain slices demonstrates the potential value of Ru-COU for the diagnosis and treatment of formaldehyde related diseases.


Assuntos
Luminescência , Rutênio , Animais , Camundongos , Cumarínicos , Corantes Fluorescentes , Formaldeído , Células HeLa , Medições Luminescentes , Lisossomos , Água
2.
BMC Public Health ; 23(1): 2541, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38115018

RESUMO

BACKGROUND: The monocytes to high-density lipoprotein cholesterol ratio (MHR) has been identified as a potential biomarker for cardiovascular and cerebrovascular diseases. In this population-based cross-sectional study, we explored the relationships among carotid artery disease (CAD), including the presence of carotid atherosclerotic plaque (CAP) and carotid artery intima-media thickness (CIMT), the MHR, and related parameter changes. METHODS: This cross-sectional study, Conducted from April to June 2019 in a rural area of Tianjin, involved middle-aged and elderly participants. Based on carotid ultrasound examinations, participants were divided into CAP and non-CAP groups. Logistic regression and Receiver Operating Characteristic (ROC) curve analyses were utilized to assess MHR's predictive value for CAP. Gender-specific analyses were also performed to examine predictive variations. The relationship between CIMT and MHR was evaluated using linear regression. RESULTS: Of the 2109 participants meeting the inclusion criteria, 51.6% were identified with CAP. Multivariate analysis revealed a significant association between MHR and CAP prevalence, (OR, 9.670; 95% CI, 2.359-39.631; P = 0.002), particularly in females (OR, 5.921; 95% CI, 1.823-19.231; P = 0.003), after adjusting for covariates. However, no significant correlation was found between CIMT and MHR when adjusted for other factors. The ROC analysis showed the area under the curve for MHR and CAP to be 0.569 (95% CI: 0.544-0.593; P < 0.001). CONCLUSIONS: These findings suggested that it is crucial to enhance early screening and intervention for CAD, specifically focusing on the prevention and progression of CAP, to address the unique health challenges faced by low-income groups in rural settings. Emphasizing these preventive measures could significantly contribute to improving cardiovascular health outcomes in this vulnerable population.


Assuntos
Doenças das Artérias Carótidas , Placa Aterosclerótica , Idoso , Pessoa de Meia-Idade , Feminino , Humanos , HDL-Colesterol , Espessura Intima-Media Carotídea , Estudos Transversais , Monócitos , Artérias Carótidas/diagnóstico por imagem , Fatores de Risco , Doenças das Artérias Carótidas/diagnóstico por imagem , Doenças das Artérias Carótidas/epidemiologia
3.
Opt Express ; 30(22): 40756-40767, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36299005

RESUMO

The temperature dependency of femtosecond laser induced surface structures opens up a new scenario for studying ultrafast laser-mater interaction on the surface and a novel method for controlling the features of these structures. The shape and crystallinity of micro/nano surface structures created by femtosecond laser irradiation of n-type silicon (100) at elevated temperatures were compared in this study. Low spatial frequency laser induced periodic ripples structures (LSFL), micrometer-sized grooves, and spikes occur at room temperature as the number of pulses increases. At 400 °C, however, the grooves parallel to the polarization are the dominant structures, notwithstanding the presence of LSFL. As the temperature rises, the periodicities of LSFL increase, which we believe is due to a reduction in the oscillation of the surface plasmon polaritons due to the increased damping rate at higher temperatures. Furthermore, Raman spectra reveal that surface structures generated at 400 °C have higher crystallinity than those formed at 25 °C. Our simulations show that the better crystallinity at high temperatures is due to a slower resolidification velocity which is caused by a smaller temperature gradient and higher energy absorption. Our findings demonstrate that the features of femtosecond laser induced surface structures, such as periodicity and crystallinity, can be controlled by adjusting the substrate temperature simultaneously, paving the way for high crystallinity surface micro/nano-structures.

4.
Zhongguo Zhong Yao Za Zhi ; 46(23): 6178-6184, 2021 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-34951244

RESUMO

The chemical constituents of the flower buds of Buddleja officinalis were investigated in this study. Eight compounds were isolated from the water extract of B. officinalis by column chromatography, and their structures were elucidated on the basis of physicochemical properties and spectral data. These compounds were identified as(Z)-hex-3-en-1-ol-1-O-ß-D-glucopyranosyl-(1→2)-[ß-D-xylcopyranosyl-(1→6)]-ß-D-glucopyranoside(1), ebracteatoside B(2), jasmonic acid-11-O-ß-D-glucopyranoside(3), 6-hydroxyluteolin-7-O-ß-D-glucopyranoside(4), luteolin-7-O-galacturonide(5), vicenin-2(6), decaffeoylverbascoside(7), and 6-O-(E)-feruloyl-D-glucopyranoside(8). Compound 1 is a new 3-hexenol glycoside. Compounds 2, 3, and 6 were isolated from Buddleja genus for the first time, and compounds 4 and 5 were isolated from this plant for the first time.


Assuntos
Buddleja , Glicosídeos Cardíacos , Glicosídeos , Extratos Vegetais
5.
Opt Express ; 28(12): 18516-18528, 2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32680049

RESUMO

Recently, great progress has been made in the research of cylindrical holography as a promising technique of 360° display. However, there is an unsolved issue of occlusion culling, which is critical to cylindrical holography and degrades the reconstructed images due to overlapping. To our knowledge, the occlusion issue in cylindrical holography has never been deeply discussed. In this paper, a method of occlusion culling is proposed for computer-generated cylindrical holograms based on a horizontal optical-path-limit function. In cylindrical diffraction, the propagation characteristics of light waves can be described by the point spread function, which is mainly obtained by analyzing the meaning of the obliquity factor in the concentric cylinder model. Different from the planar diffraction, the diffraction area of each source point is limited within the tangents in cylindrical diffraction. Therefore, a horizontal optical path limit function that acts directly on the point spread function for occlusion culling is established. Besides, the proposed method can be applied to the three-dimensional object by using the layer-oriented method. Moreover, the effectiveness of the proposed occlusion culling method is verified by the numerical simulation results and error analysis of the reconstructed images.

6.
Opt Express ; 28(21): 31373-31385, 2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33115111

RESUMO

The spherical computer-generated hologram is inevitably suffered from the speckle noise since it is necessary to add random phase to the object to ensure the scattering characteristic of reconstructed image. The speckle noise seriously degrades the quality of reconstructed image especially for a spherical phase-only hologram (SPOH). In this paper, spherical self-diffraction iteration (SSDI) algorithm is proposed to suppress the speckle noise in the SPOH. The algorithm is based on spherical self-diffraction (SSD) model which is a special case of spherical back-propagation (SBP) model at limit condition. The correctness of SBP and SSD as well as the effectiveness of SSDI algorithm are verified by numerical simulations. Meaningfully, the proposed method significantly outperforms the conventional methods in speckle suppression performance and computing speed. As far as we known, models of SBP and SSD as well as conception of SSDI are firstly proposed and applied for speckle suppression of SPOH.

7.
Med Sci Monit ; 24: 2541-2549, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29694335

RESUMO

BACKGROUND Histone H2A deubiquitinase MYSM1 has recently been shown to be essential for hematopoiesis and hematopoietic stem cell (HSC) function in both mice and humans. However, conventional MYSM1 knockouts cause partial embryonic lethality and growth retardation, and it is difficult to convincingly remove the effects of environmental factors on HSC differentiation and function. MATERIAL AND METHODS MYSM1 conditional knockout (cKO) mice were efficiently induced by using the Vav1-cre transgenic system. The Vav-Cre MYSM1 cKO mice were then analyzed to verify the intrinsic role of MYSM1 in hematopoietic cells. RESULTS MYSM1 cKO mice were viable and were born at normal litter sizes. At steady state, we observed a defect in hematopoiesis, including reduced bone marrow cellularity and abnormal HSC function. MYSM1 deletion drives HSCs from quiescence into rapid cycling, and MYSM1-deficient HSCs display impaired engraftment. In particular, the immature cycling cKO HSCs have elevated reactive oxygen species (ROS) levels and are prone to apoptosis, resulting in the exhaustion of the stem cell pool during stress response to 5-FU. CONCLUSIONS Our study using MYSM1 cKO mice confirms the important role of MYSM1 in maintaining HSC quiescence and survival.


Assuntos
Endopeptidases/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Animais , Apoptose/fisiologia , Diferenciação Celular/fisiologia , Divisão Celular , Sobrevivência Celular/genética , Endopeptidases/genética , Hematopoese , Células-Tronco Hematopoéticas/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Espécies Reativas de Oxigênio/metabolismo , Transativadores , Proteases Específicas de Ubiquitina
8.
Sensors (Basel) ; 18(3)2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29495637

RESUMO

With the development of satellite load technology and very large-scale integrated (VLSI) circuit technology, on-board real-time synthetic aperture radar (SAR) imaging systems have facilitated rapid response to disasters. A key goal of the on-board SAR imaging system design is to achieve high real-time processing performance under severe size, weight, and power consumption constraints. This paper presents a multi-node prototype system for real-time SAR imaging processing. We decompose the commonly used chirp scaling (CS) SAR imaging algorithm into two parts according to the computing features. The linearization and logic-memory optimum allocation methods are adopted to realize the nonlinear part in a reconfigurable structure, and the two-part bandwidth balance method is used to realize the linear part. Thus, float-point SAR imaging processing can be integrated into a single Field Programmable Gate Array (FPGA) chip instead of relying on distributed technologies. A single-processing node requires 10.6 s and consumes 17 W to focus on 25-km swath width, 5-m resolution stripmap SAR raw data with a granularity of 16,384 × 16,384. The design methodology of the multi-FPGA parallel accelerating system under the real-time principle is introduced. As a proof of concept, a prototype with four processing nodes and one master node is implemented using a Xilinx xc6vlx315t FPGA. The weight and volume of one single machine are 10 kg and 32 cm × 24 cm × 20 cm, respectively, and the power consumption is under 100 W. The real-time performance of the proposed design is demonstrated on Chinese Gaofen-3 stripmap continuous imaging.

9.
Sensors (Basel) ; 17(7)2017 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-28672813

RESUMO

With the development of satellite load technology and very large scale integrated (VLSI) circuit technology, onboard real-time synthetic aperture radar (SAR) imaging systems have become a solution for allowing rapid response to disasters. A key goal of the onboard SAR imaging system design is to achieve high real-time processing performance with severe size, weight, and power consumption constraints. In this paper, we analyse the computational burden of the commonly used chirp scaling (CS) SAR imaging algorithm. To reduce the system hardware cost, we propose a partial fixed-point processing scheme. The fast Fourier transform (FFT), which is the most computation-sensitive operation in the CS algorithm, is processed with fixed-point, while other operations are processed with single precision floating-point. With the proposed fixed-point processing error propagation model, the fixed-point processing word length is determined. The fidelity and accuracy relative to conventional ground-based software processors is verified by evaluating both the point target imaging quality and the actual scene imaging quality. As a proof of concept, a field- programmable gate array-application-specific integrated circuit (FPGA-ASIC) hybrid heterogeneous parallel accelerating architecture is designed and realized. The customized fixed-point FFT is implemented using the 130 nm complementary metal oxide semiconductor (CMOS) technology as a co-processor of the Xilinx xc6vlx760t FPGA. A single processing board requires 12 s and consumes 21 W to focus a 50-km swath width, 5-m resolution stripmap SAR raw data with a granularity of 16,384 × 16,384.

10.
Int J Mol Sci ; 18(5)2017 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-28513573

RESUMO

The present study aimed to analyze novel mechanisms underlying Nrf2-mediated anti-apoptosis in periodontal ligament stem cells (PDLSCs) in the periodontitis oxidative microenvironment. We created an oxidative stress model with H2O2-treated PDLSCs. We used real-time PCR, Western blotting, TUNEL staining, fluorogenic assay and transfer genetics to confirm the degree of oxidative stress and apoptosis as well as the function of nuclear factor-erythroid 2-related factor 2 (Nrf2). We demonstrated that with upregulated levels of reactive oxygen species (ROS) and malondialdehyde (MDA), the effect of oxidative stress was obvious under H2O2 treatment. Oxidative molecules were altered after the H2O2 exposure, whereby the signaling of Nrf2 was activated with an increase in its downstream effectors, heme oxygenase-1 (HO-1), NAD(P)H:quinone oxidoreductase 1 (NQO1) and γ-glutamyl cysteine synthetase (γ-GCS). Additionally, the apoptosis levels gradually increased with oxidative stress by the upregulation of caspase-9, caspase-3, Bax and c-Fos levels in addition to the downregulation of Bcl-2. However, there was no alterations in levels of caspase-8. The enhanced antioxidant effect could not mitigate the occurrence of apoptosis. Furthermore, Nrf2 overexpression effectively improved the anti-oxidative levels and increased cell proliferation. At the same time, overexpression effectively restrained TUNEL staining and decreased the molecular levels of caspase-9, caspase-3, Bax and c-Fos, but not that of caspase-8. In contrast, silencing the expression of Nrf2 levels had the opposite effect. Collectively, Nrf2 alleviates PDLSCs via its effects on regulating oxidative stress and anti-intrinsic apoptosis by the activation of oxidative enzymes.


Assuntos
Apoptose , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Ligamento Periodontal/citologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Expressão Gênica , Inativação Gênica , Humanos , Peróxido de Hidrogênio/farmacologia , Fator 2 Relacionado a NF-E2/genética , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
11.
Physiol Behav ; 280: 114561, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38641188

RESUMO

Expression is the main method for judging the emotional state and psychological condition of the human body, and the prediction of changes in facial expressions can effectively determine the mental health of a person, thus avoiding serious psychological or psychiatric disorders due to early negligence. From a computer vision perspective, most researchers have focused on studying facial expression analysis, and in some cases, body posture is also considered. However their performance is more limited under unconstrained natural conditions, which requires more information to be used in human emotion analysis. In this paper, we design an Adaptive Multi-End Fusion Attention Mechanism suitable for extracting human body information based on the deep learning framework, depending on human expressions, postures and the environment they are in and add it to an object detection model to obtain the information we need from different regions of the human body and face and features of different sizes and use fusion networks for feature fusion and classification, and from different test methods to confirm that this fusion approach for expression recognition and prediction is feasible. This model achieves an average accuracy of 34.51 % in the Emotic contextual expression recognition dataset.


Assuntos
Atenção , Aprendizado Profundo , Emoções , Expressão Facial , Humanos , Emoções/fisiologia , Atenção/fisiologia , Redes Neurais de Computação , Transtornos Mentais/diagnóstico , Transtornos Mentais/psicologia
12.
Adv Sci (Weinh) ; 11(10): e2308072, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38239021

RESUMO

Bone morphogenetic protein (BMP) signaling plays a vital role in differentiation, organogenesis, and various cell processes. As a member of TGF-ß superfamily, the BMP initiation usually accompanies crosstalk with other signaling pathways and simultaneously activates some of them. It is quite challenging to solely initiate an individual pathway. In this study, an opsin-free optical method to specifically activate BMP receptors (BMPR) and subsequent pSmad1/5/8 cascades by a single-time scan of a tightly-focused femtosecond laser in the near infrared range is reported. Via transient two-photon excitation to intrinsic local flavins near the cell membrane, the photoactivation drives conformational changes of preformed BMPR complexes to enable their bonding and phosphorylation of the GS domain in BMPR-I by BMPR-II. The pSmad1/5/8 signaling is initiated by this method, while p38 and pSmad2 are rarely perturbed. Based on a microscopic system, primary adipose-derived stem cells in an area of 420 â€…× 420 µm2 are photoactivated by a single-time laser scanning for 1.5 s and exhibit pSmad1/5/8 upregulation and osteoblastic differentiation after 21 days. Hence, an opsin-free, specific, and noninvasive optical method to initiate BMP signaling, easily accomplished by a two-photon microscope system is reported.


Assuntos
Proteína Morfogenética Óssea 2 , Proteínas Morfogenéticas Ósseas , Receptores de Proteínas Morfogenéticas Ósseas , Proteínas Morfogenéticas Ósseas/metabolismo , Opsinas , Fator de Crescimento Transformador beta/metabolismo
13.
Polymers (Basel) ; 16(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38932025

RESUMO

The direct copolymerization of ethylene with polar monomers to produce functional polyolefins continues to be highly appealing due to its simple operation process and controllable product microstructure. Low-cost nickel catalysts have been extensively utilized in academia for the synthesis of polar polyethylenes. However, the development of high-temperature copolymerization catalysts suitable for industrial production conditions remains a significant challenge. Classified by the resultant copolymers, this review provides a comprehensive summary of the research progress in nickel complex catalyzed ethylene-polar monomer copolymerization at elevated temperatures in the past five years. The polymerization results of ethylene-methyl acrylate copolymers, ethylene-tert-butyl acrylate copolymers, ethylene-other fundamental polar monomer copolymers, and ethylene-special polar monomer copolymers are thoroughly summarized. The involved nickel catalysts include the phosphine-phenolate type, bisphosphine-monoxide type, phosphine-carbonyl type, phosphine-benzenamine type, and the phosphine-enolate type. The effective modulation of catalytic activity, molecular weight, molecular weight distribution, melting point, and polar monomer incorporation ratio by these catalysts is concluded and discussed. It reveals that the optimization of the catalyst system is mainly achieved through the methods of catalyst structure rational design, extra additive introduction, and single-site catalyst heterogenization. As a result, some outstanding catalysts are capable of producing polar polyethylenes that closely resemble commercial products. To achieve industrialization, it is essential to further emphasize the fundamental science of high-temperature copolymerization systems and the application performance of resultant polar polyethylenes.

14.
Mol Biol Rep ; 40(9): 5247-53, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23666062

RESUMO

The purpose of this study is to characterize the expression profile of a novel gene WDR72 in laying hens. Sixty-week old Hy-line Brown layers with similar laying sequence, egg weight, and shell strength, were selected and divided into 5 groups. The oviduct segments, such as magnum, white isthmus, and uterus, were sampled from each group of hens which were killed at 3 h post-oviposition (3 h P.O.), 4.15-4.5 h P.O., 8.5-9 h P.O., 12 h P.O. and 18 h P.O., respectively. To the 8.5-9 h P.O. hens, additional organs were also sampled besides oviduct tissues. Moreover, another group of hens with weak shell strength were selected and their oviduct segments were sampled at 12 h P.O. Then the expression profile of WDR72 was analyzed using real-time quantitative RT-PCR. The results showed as follows. (1) WDR72 transcripts specifically distributed in parts of organs investigated. At 8.5-9 h P.O., WDR72 appeared to be much more abundantly expressed in hens' oviduct sections, then followed in turn by brain, kidney, lung, glandular stomach and spleen. However, there were almost no WDR72 transcripts expressed in pectoral muscle, liver, heart and jejunum. (2) During the process of an "egg" passing through an oviduct, the expression of WDR72 in the magnum was greatly superior to that in the other two oviduct segments at 3 h P.O., 8.5-9 h P.O., and 12 h P.O.; while it was white isthmus in which WDR72 transcript levels were the highest at 4.15-4.5 h P.O. and 18 h P.O. (3) To any oviduct segment, not only uterus but also magnum and white isthmus, the expression of WDR72 in which was significantly up-regulated at the stages of active calcification. (4) WDR72 transcript levels in any oviduct segments of strong-shell hens were significantly higher than that of weak-shell layers (P < 0.01), which arose the possibility that WDR72 was positively associated with chicken eggshell strength. In conclusion, the expression profile of WDR72 gene in laying hens has been characterized, which would facilitate to further probe into its functions.


Assuntos
Galinhas/genética , Regulação da Expressão Gênica/fisiologia , Proteínas/metabolismo , Análise de Variância , Animais , Primers do DNA/genética , Feminino , Perfilação da Expressão Gênica , Oviductos/metabolismo , Oviposição/fisiologia , Proteínas/genética , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Tempo , Vísceras/metabolismo
15.
J Colloid Interface Sci ; 649: 245-254, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37348344

RESUMO

HYPOTHESIS: The utilization of emulsion-filled protein hydrogels for controlled lipid release in the gastrointestinal tract (GIT) displays great potential in drug delivery and obesity treatment. However, how intermolecular interactions among protein molecules influence lipid digestion of the gels is still understudied. EXPERIMENTS: Differently structured whey protein emulsion gels were fabricated by heating emulsions with blocking of disulfide bonds (the "noncovalent" gel), noncovalent interactions (the "disulfide" gel), or neither of these (the "control" gel). The intermolecular interactions-gel structure-lipid digestion relationship was investigated by characterizing structural/mechanical properties of the gels and monitoring their dynamic breakdown in a simulated GIT. FINDINGS: Although the disulfide-crosslinked protein network formed thick interfacial layers around oil droplets and resisted intestinal proteolysis, the "disulfide" gel had the fastest lipolysis rate, indicating that it could not inhibit the access of lipases to oil droplets. In contrast, the "noncovalent" gel was more susceptible to in-vitro digestion than the "control" gel because of lower gel strength, resulting in a faster lipolysis rate. This demonstrated that intermolecular disulfide bonds and noncovalent interactions played distinctive roles in the digestion of the gels; they represented the structural backbone and the infill in the gel structure, respectively.


Assuntos
Digestão , Lipídeos , Proteínas do Soro do Leite/química , Emulsões/química , Géis/química
16.
J Biomed Mater Res A ; 111(8): 1176-1184, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36740897

RESUMO

Radiation therapy has been widely used in the clinical treatment of tumors. Due to the low radiation absorption of tumors, a high dose of ionizing radiation is often required during radiotherapy, which causes serious damage to normal tissues near tumors. Boron neutron capture therapy (BNCT) is more targeted than conventional radiotherapy. To improve the therapeutic effect of cancer, albumin was selected as the drug carrier to wrap the fluorescent tracer boron drug BS-CyP and prepare the nanoparticles. Then, we developed a novel tumor-targeting nano-boron drug by using hyaluronic acid to modify the nanoparticles. We found that BS-CyP albumin nanoparticles modified with hyaluronic acid effectively delayed drug release and enhanced the aggregation, in tumors, showing good safety with no obvious toxicity to cells and mice. This study confirmed the advantages of boron drugs modified with hyaluronic acid targeting tumors and may provide a reference for BNCT.


Assuntos
Terapia por Captura de Nêutron de Boro , Nanopartículas , Neoplasias , Animais , Camundongos , Ácido Hialurônico , Boro/uso terapêutico , Neoplasias/tratamento farmacológico , Compostos de Boro
17.
Foods ; 12(13)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37444327

RESUMO

In this work, we extracted proteins from white quinoa cultivated in the northeast of Qinghai-Tibet plateau using the method of alkaline solubilization and acid precipitation, aiming to decipher how extraction pH (7-11) influenced extractability, purity and recovery rate, composition, multi-length scale structure, and gelling properties of quinoa protein isolate (QPI). The results showed that protein extractability increased from 39 to 58% with the increment of pH from 7 to 11 whereas protein purity decreased from 89 to 82%. At pH 7-11, extraction suspensions and QPI showed the similar major bands in SDS-PAGE with more minor ones (e.g., protein fractions at > 55 or 25-37 kDa) in suspensions. Extraction pH had limited effect on the secondary structure of QPI. In contrast, the higher-order structures of QPI were significantly affected, e.g., (1) emission maximum wavelength of intrinsic fluorescence increased with extraction pH; (2) surface hydrophobicity and the absolute value of zeta-potential increased with increasing extraction pH from 7 to 9, and then markedly decreased; (3) the particle size decreased to the lowest value at pH 9 and then increased to the highest value at pH 11; and (4) denaturation temperature of QPI had a large decrease with increasing extraction pH from 7/8 to 9/10. Besides, heat-set QPI gels were formed by loosely-connected protein aggregates, which were strengthened with increasing extraction pH. This study would provide fundamental data for industrial production of quinoa protein with desired quality.

18.
Polymers (Basel) ; 16(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38201692

RESUMO

The emission of chlorinated pollutants is one of the main problems when recovering copper (Cu) via pyrolysis from waste enameled wires. This is mainly attributed to other wastes which possess high poly(vinyl chloride) content, such as electrical wires and cables, which are often recycled together with enameled copper wires. In this research, to control the chlorinated pollutants, copper(II) oxide (CuO) was chosen and demonstrated to be an efficient dechlorinating agent, and CuO did not introduce any impurities that influence the quality of the recovered Cu. The pyrolysis and co-pyrolysis of polyester enameled wires, PVC, and CuO were investigated, and special attention was paid to chlorinated compounds in released pyrolytic products. In particular, the co-pyrolysis of this ternary mixture was studied for the first time, and some new pyrolysis behaviors were discovered. For example, the results of Py-GC/MS analyses showed that the addition of CuO removed about 75% of the chloro-organic products, the main types of which were chloroaromatic compounds rather than the more toxic chloroesters. Moreover, pyrolysis gases were collected and characterized via ion chromatography, and the results showed that the chlorine content in the pyrolysis gases decreased by about 71%. TG analysis indicated that CuO only minimally affected the pyrolysis of polyester paint. However, through the chlorine fixation effect, CuO influenced the dechlorination and dehydrochlorination of PVC, as well as secondary reactions between HCl and pyrolysis products of polyester paint, therefore changing the products and behaviors of co-pyrolysis. Mechanism of reducing chlorine-containing pollutants and reaction mechanism of forming typical pyrolysis products closely correlated to the effects of CuO were also proposed, providing theoretical guidance for the recycling of waste enameled wires.

19.
Theranostics ; 13(3): 1042-1058, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36793856

RESUMO

Background: Radiodynamic therapy (RDT) is an emerging novel anti-cancer treatment based on the generation of cytotoxic reactive oxygen species (ROS) at the lesion site following the interaction between low-dose X-ray and a photosensitizer (PS) drug. For a classical RDT, scintillator nanomaterials loaded with traditional PSs are generally involved to generate singlet oxygen (1O2). However, this scintillator-mediated strategy generally suffers from insufficient energy transfer efficiency and the hypoxic tumor microenvironment, and finally severely impedes the efficacy of RDT. Methods: Gold nanoclusters were irradiated by low dose of X-ray (called RDT) to investigate the production of ROS, killing efficiency of cell level and living body level, antitumor immune mechanism and biosafety. Results: A novel dihydrolipoic acid coated gold nanoclusters (AuNC@DHLA) RDT, without additional scintillator or photosensitizer assisted, has been developed. In contrast to scintillator-mediated strategy, AuNC@DHLA can directly absorb the X-ray and exhibit excellent radiodynamic performance. More importantly, the radiodynamic mechanism of AuNC@DHLA involves electron-transfer mode resulting in O2 -• and HO•, and excess ROS has been generated even under hypoxic conditions. Highly efficient in vivo treatment of solid tumors had been achieved via only single drug administration and low-dose X-ray radiation. Interestingly, enhanced antitumor immune response was involved, which could be effective against tumor recurrence or metastasis. Negligible systemic toxicity was also observed as a consequence of the ultra-small size of AuNC@DHLA and rapid clearance from body after effective treatment. Conclusions: Highly efficient in vivo treatment of solid tumors had been achieved, enhanced antitumor immune response and negligible systemic toxicity were observed. Our developed strategy will further promote the cancer therapeutic efficiency under low dose X-ray radiation and hypoxic conditions, and bring hope for clinical cancer treatment.


Assuntos
Ouro , Fármacos Fotossensibilizantes , Humanos , Fármacos Fotossensibilizantes/uso terapêutico , Espécies Reativas de Oxigênio , Raios X , Recidiva Local de Neoplasia , Hipóxia , Imunidade , Microambiente Tumoral
20.
Biochim Biophys Acta Mol Basis Dis ; 1868(12): 166495, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-35850177

RESUMO

Cell polarity refers to the uneven distribution of certain cytoplasmic components in a cell with a spatial order. The planar cell polarity (PCP), the cell aligns perpendicular to the polar plane, in endothelial cells (ECs) has become a research hot spot. The planar polarity of ECs has a positive significance on the regulation of cardiovascular dysfunction, pathological angiogenesis, and ischemic stroke. The endothelial polarity is stimulated and regulated by biomechanical force. Mechanical stimuli promote endothelial polarization and make ECs produce PCP to maintain the normal physiological and biochemical functions. Here, we overview recent advances in understanding the interplay and mechanism between PCP and ECs function involved in mechanical forces, with a focus on PCP signaling pathways and organelles in regulating the polarity of ECs. And then showed the related diseases caused by ECs polarity dysfunction. This study provides new ideas and therapeutic targets for the treatment of endothelial PCP-related diseases.


Assuntos
Polaridade Celular , Células Endoteliais , Polaridade Celular/fisiologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA