Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
1.
J Pharmacol Sci ; 154(2): 113-126, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38246725

RESUMO

Excessive bone resorption caused by upregulated osteoclast activity is a key factor in osteoporosis pathogenesis. Farrerol is a typical natural flavanone and exhibits various pharmacological actions. However, the role and mechanism of action of farrerol in osteoclast differentiation regulation remain unclear. This study aimed to evaluate the effects and mechanism of farrerol on the inhibition of osteoclastogenesis. Tartrate-resistant acid phosphatase staining, F-actin staining, and the pit formation assay were performed to examine the differentiation and functions of osteoclasts in vitro. The expression of proteins associated with the nuclear factor kappa B and mitogen-activated protein kinase signaling pathways was analyzed by western blotting. Dual X-ray absorptiometry, microcomputed tomography, and histopathological and immunohistochemical analyses were performed to determine the therapeutic effect of farrerol in vivo bone loss prevention. The effects of farrerol on osteoblastic bone formation were assessed using alkaline phosphatase, alizarin red S staining, and calcein-alizarin red S double labeling. Farrerol inhibited osteoclastogenesis and bone resorption in osteoclasts by suppressing nuclear factor kappa B signaling rather than mitogen-activated protein kinase signaling in vitro. Farrerol protected mice against ovariectomy-induced bone loss by inhibiting osteoclast-mediated bone resorption, instead of promoting osteoblast-mediated bone formation in vivo. The findings of the current study revealed that farrerol is a potential therapeutic agent for osteoporosis.


Assuntos
Antraquinonas , Reabsorção Óssea , Cromonas , Osteoporose Pós-Menopausa , Osteoporose , Feminino , Humanos , Animais , Camundongos , NF-kappa B , Osteoclastos , Osteoporose Pós-Menopausa/tratamento farmacológico , Microtomografia por Raio-X , Transdução de Sinais , Osteoporose/tratamento farmacológico , Proteínas Quinases Ativadas por Mitógeno , Reabsorção Óssea/tratamento farmacológico
2.
Bioorg Chem ; 143: 107069, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38160477

RESUMO

Tetrandrine (TET) possesses multiple pharmacological activities and could suppress tumor proliferation via PI3K pathway inhibition. However, inferior antitumor activity and potential toxicity limit its clinical application. In the present study, a series of 14-sulfonamide and sulfonate TET derivatives were designed, synthesized, and evaluated for biological activities. Through structural-activity relationship studies, compound 3c with α, ß-unsaturated carbonyl group exhibited the most potent activity against all tested tumor cell lines (including Hela, HCT116, HepG2, MCF-7, and SHSY5Y), as well as negligible toxicity against normal cell lines LO2 and HEK293. Additionally, compound 3c effectively inhibited HCT116 and CT26 cell proliferation in vitro with increased cell proportion in the G2/M phase, activated the mitochondrial apoptosis pathway, and induced colon cancer cell apoptosis by suppressing the PI3K/AKT/mTOR pathway. The further molecular docking results confirmed that compound 3c is potentially bound to multiple residues in PI3K with a stronger binding affinity than TET. Ultimately, compound 3c dramatically suppressed tumor growth in the CT26 xenograft tumor model, without noticeable visceral toxicity detected in the high-dose group. In summary, compound 3c might present new insights for designing new PI3K inhibitors and be a potential candidate for colon cancer treatment.


Assuntos
Benzilisoquinolinas , Neoplasias do Colo , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Fosfatidilinositol 3-Quinases/metabolismo , Simulação de Acoplamento Molecular , Células HEK293 , Serina-Treonina Quinases TOR/metabolismo , Linhagem Celular Tumoral , Apoptose , Proliferação de Células , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo
3.
Appl Microbiol Biotechnol ; 108(1): 226, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38381229

RESUMO

Terpenoids are a class of structurally complex, naturally occurring compounds found predominantly in plant, animal, and microorganism secondary metabolites. Classical terpenoids typically have carbon atoms in multiples of five and follow well-defined carbon skeletons, whereas noncanonical terpenoids deviate from these patterns. These noncanonical terpenoids often result from the methyltransferase-catalyzed methylation modification of substrate units, leading to irregular carbon skeletons. In this comprehensive review, various activities and applications of these noncanonical terpenes have been summarized. Importantly, the review delves into the biosynthetic pathways of noncanonical terpenes, including those with C6, C7, C11, C12, and C16 carbon skeletons, in bacteria and fungi host. It also covers noncanonical triterpenes synthesized from non-squalene substrates and nortriterpenes in Ganoderma lucidum, providing detailed examples to elucidate the intricate biosynthetic processes involved. Finally, the review outlines the potential future applications of noncanonical terpenoids. In conclusion, the insights gathered from this review provide a reference for understanding the biosynthesis of these noncanonical terpenes and pave the way for the discovery of additional unique and novel noncanonical terpenes. KEY POINTS: •The activities and applications of noncanonical terpenoids are introduced. •The noncanonical terpenoids with irregular carbon skeletons are presented. •The microbial biosynthesis of noncanonical terpenoids is summarized.


Assuntos
Terpenos , Triterpenos , Animais , Carbono , Metiltransferases , Processamento de Proteína Pós-Traducional
4.
Biol Pharm Bull ; 47(2): 486-498, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38199251

RESUMO

Resina Draconis is a traditional Chinese medicine, with the in-depth research, its medicinal value in anti-tumor has been revealed. Loureirin A is extracted from Resina Draconis, however, research on the anti-tumor efficacy of Loureirin A is rare. Herein, we investigated the function of Loureirin A in melanoma. Our research demonstrated that Loureirin A inhibited the proliferation of and caused G0/G1 cell cycle arrest in melanoma cells in a concentration-dependent manner. Further study showed that the melanin content and tyrosinase activity was enhanced after Loureirin A treatment, demonstrated that Loureirin A promoted melanoma cell differentiation, which was accompanied with the reduce of WNT signaling pathway. Meanwhile, we found that Loureirin A suppressed the migration and invasion of melanoma cells through the protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway. Taken together, this study demonstrated for the first time the anti-tumor effects of Loureirin A in melanoma cells, which provided a novel therapeutic strategy against melanoma.


Assuntos
Chalconas , Melanoma , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Melanoma/metabolismo , Diferenciação Celular , Via de Sinalização Wnt , Serina-Treonina Quinases TOR/metabolismo , Proliferação de Células , Movimento Celular , Linhagem Celular Tumoral
5.
Angew Chem Int Ed Engl ; 63(4): e202316481, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38063138

RESUMO

Boronate rearrangements, such as the Matteson and Petasis reactions, are valuable metal-free reactions for the transfer of the carbo group on boron to intramolecular electrophilic sites. However, only highly reactive electrophiles are suitable, and ketones are too inactive for those boronate rearrangements due to the high energy barriers. We disclose here the 1,3-boronate rearrangement to ketones, for which a high energy barrier (44.9 kcal/mol) is prohibitory for thermal reactions in the ground state. The reaction is enabled by the key keto-enol-boronate bidentate complex formation in situ, which absorbs visible light to reach the excited state for the chemoselective 1,3-boronate rearrangement to ketones. Experimental and computational investigations exclude free radical intermediates from organoboronates. The aryl, alkenyl, and alkyl boronic acids react with various 1,3-diketones driven by visible light irradiation to construct structurally diverse ß-keto tertiary alcohols under metal-free conditions. The reaction demonstrates substrate diversity with 58 examples, yields up to 98 %, and it is suitable for gram-scale synthesis.

6.
Opt Express ; 31(9): 15118-15130, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37157360

RESUMO

Strong demand for developing the photothermal (PT) and electrothermal devices with ultra-large array is increasing. Thermal performance prediction is vital to optimize the key properties of the devices with ultra-large array. Finite element method (FEM) provides a powerful numerical approach for solving complex thermophysics issues. However, for calculating the performance of devices with ultra-large array, it is very memory-consuming and time-consuming to build an equal scale three-dimensional (3D) FEM model. For an ultra-large periodic array irradiated with a local heating source, the use of periodic boundary conditions could lead to considerable errors. To solve this problem, a linear extrapolation method based on multiple equiproportional models (LEM-MEM) is proposed in this paper. The proposed method builds several reduced-size FEM models to carry out simulation and extrapolation, which avoids dealing with the ultra-large arrays directly and greatly reduces the computation consumption. To verify the accuracy of LEM-MEM, a PT transducer with beyond 4000 × 4000 pixels is proposed, fabricated, tested and compared with the prediction results. Four different pixel patterns are designed and fabricated to test their steady thermal properties. The experimental results demonstrate that LEM-MEM has great predictability, and the maximum percentage error of average temperature is within 5.22% in four different pixel patterns. In addition, the measured response time of the proposed PT transducer is within 2 ms. The proposed LEM-MEM not only provides design guidance for optimizing PT transducers, but is also very useful for other thermal engineering problems in ultra-large array that requires facile and efficient prediction strategy.

7.
Pharmacol Res ; 187: 106584, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36462326

RESUMO

Prostate cancer (PCa) is associated with a high incidence and metastasis rate globally, resulting in an unsatisfactory prognosis and a huge economic burden due to the current deficient of therapeutic strategies. As the most abundant component of Cortex Mori, Sanggenon C (SC) is well known to possess bioactivities in tumors, but its mechanism is poorly understood. Consequently, we attempted to investigate whether SC could modulate circular RNA(s) levels and hence anti-PCa development. We found that SC dramatically promoted cell apoptosis and induced G0/G1 phase arrest in PCa cell lines via the circHMGCS1-miR-205-5p-ErBB3 axis. In brief, circHMGCS1 is highly expressed in PCa and is positively correlated with the degree of malignancy. Over-expression of circHMGCS1 is not only associated with the proliferation of PCa cells but also blocks SC-induced pro-apoptotic effects. As a verified sponge of circHMGCS1, miR-205-5p is down-regulated in PCa tumors, which negatively regulates PCa cell proliferation by modulating ErBB3 expression. After miR-205-5p mimics or inhibitors were used to transfect PCa cells, the effects of circHMGCS1 OE and SC on PCa cells were completely diminished. Similar to miR-205-5p inhibitors, siErBB3 could oppose SC-triggered pro-apoptotic effects on PCa cells. All these results were confirmed in vivo. Together, SC exerts its anti-tumor effects on PCa by inhibiting circHMGCS1 expression and results in the latter losing the ability to sponge miR-205-5p. Subsequently, unfettered miR-205-5p could mostly down-regulate ErBB3 expression by binding to the 5'UTR of ErBB3 mRNA, which eventually resulted in PCa cell cycle arrest and pro-apoptosis.


Assuntos
MicroRNAs , Neoplasias da Próstata , Masculino , Humanos , Movimento Celular , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Proliferação de Células , Linhagem Celular Tumoral , Receptor ErbB-3/genética , Receptor ErbB-3/metabolismo
8.
Microb Cell Fact ; 22(1): 76, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37085866

RESUMO

Central carbon metabolism (CCM), including glycolysis, tricarboxylic acid cycle and the pentose phosphate pathway, is the most fundamental metabolic process in the activities of living organisms that maintains normal cellular growth. CCM has been widely used in microbial metabolic engineering in recent years due to its unique regulatory role in cellular metabolism. Using yeast and Escherichia coli as the representative organisms, we summarized the metabolic engineering strategies on the optimization of CCM in eukaryotic and prokaryotic microbial chassis, such as the introduction of heterologous CCM metabolic pathways and the optimization of key enzymes or regulatory factors, to lay the groundwork for the future use of CCM optimization in metabolic engineering. Furthermore, the bottlenecks in the application of CCM optimization in metabolic engineering and future application prospects are summarized.


Assuntos
Carbono , Engenharia Metabólica , Carbono/metabolismo , Redes e Vias Metabólicas , Via de Pentose Fosfato , Ciclo do Ácido Cítrico , Escherichia coli/metabolismo , Saccharomyces cerevisiae/metabolismo
9.
J Nat Prod ; 86(4): 966-978, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37043698

RESUMO

Hepatocellular carcinoma (HCC) is a malignant tumor with a high rate of recurrence and a poor prognosis. Here, we investigated the effect and the potential antitumor mechanism of Gamabufotalin (CS-6) against HCC. Our results show that CS-6 strikingly reduced cell viability, inhibited colony formation, and promoted apoptosis in Hep3B and Huh7 cells. In vivo, CS-6 inhibited HCC xenograft tumor growth with no toxicity to normal tissues. Mechanistically, we found that CS-6 could induce cytoprotective autophagy through the mTOR-ULK1 signaling pathway through downregulation of p62 and upregulation of LC3 II/LC3 I. Meanwhile, CS-6 activated caspase-3 and PARP mediated apoptosis, and the caspase inhibitor Z-VAD-FMK blocked the CS-6-induced cell death in HCC cells. Moreover, autophagy and apoptosis were found to have antagonistic effects in Hep3B and Huh7 cells. Both the autophagy inhibitor chloroquine (CQ) and the mTOR activator MHY1485 blocked autophagy and further enhanced CS-6-induced apoptosis. Taken together, we demonstrated for the first time that CS-6 promotes apoptosis and cytoprotective autophagy through the mTOR signaling pathway in HCC, which proposes a novel strategy for HCC therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Apoptose , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Autofagia , Linhagem Celular Tumoral , Proliferação de Células
10.
Appl Microbiol Biotechnol ; 107(11): 3391-3404, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37126085

RESUMO

Rare ginsenosides are the deglycosylated secondary metabolic derivatives of major ginsenosides, and they are more readily absorbed into the bloodstream and function as active substances. The traditional preparation methods hindered the potential application of these effective components. The continuous elucidation of ginsenoside biosynthesis pathways has rendered the production of rare ginsenosides using synthetic biology techniques effective for their large-scale production. Previously, only the progress in the biosynthesis and biotechnological production of major ginsenosides was highlighted. In this review, we summarized the recent advances in the identification of key enzymes involved in the biosynthetic pathways of rare ginsenosides, especially the glycosyltransferases (GTs). Then the construction of microbial chassis for the production of rare ginsenosides, mainly in Saccharomyces cerevisiae, was presented. In the future, discovery of more GTs and improving their catalytic efficiencies are essential for the metabolic engineering of rare ginsenosides. This review will give more clues and be helpful for the characterization of the biosynthesis and metabolic engineering of rare ginsenosides. KEY POINTS: • The key enzymes involved in the biosynthetic pathways of rare ginsenosides are summarized. • The recent progress in metabolic engineering of rare ginsenosides is presented. • The discovery of glycosyltransferases is essential for the microbial production of rare ginsenosides in the future.


Assuntos
Ginsenosídeos , Panax , Engenharia Metabólica , Ginsenosídeos/metabolismo , Panax/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/metabolismo
11.
Phytother Res ; 37(10): 4740-4754, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37559472

RESUMO

Gastric cancer (GC) is one of the most common malignant tumors worldwide. Thus, the development of safe and effective therapeutic compounds for GC treatment is urgently required. Here, we aimed to examine the role of picropodophyllin (PPP), a compound extracted from the rhizome of Dysosma versipellis (Hance) M. Cheng ex Ying, on the proliferation of GC cells. Our study revealed that PPP inhibits the proliferation of GC cells in a dose-dependent manner by inducing apoptosis. Moreover, our study elucidated that PPP suppresses the growth of GC tumor xenografts with no side effects of observable toxicity. Mechanistically, PPP exerts its effects by blocking the AKT/mammalian target of rapamycin (mTOR) signaling pathway; these effects are markedly abrogated by the overexpression of constitutively active AKT. Furthermore, drug affinity responsive target stability (DARTS) and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) revealed that heat shock protein 90 (HSP90) may be a potential target of PPP. Surface plasmon resonance and immunoprecipitation assay validated that PPP directly targets HSP90 and disrupts the binding of HSP90 to AKT, thereby suppressing GC cell proliferation. Thus, our study revealed that PPP may be a promising therapeutic compound for GC treatment.

12.
J Environ Manage ; 336: 117595, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36871452

RESUMO

Bacterial alkaline phosphatase encoded by the phoD gene is essential for phosphorus (P) cycling in ecosystems. Until now, knowledge of the phoD gene diversity in shallow lake sediments is still lacking. In this study, from early to late stage of cyanobacterial blooms, we investigated the dynamic changes of the abundance of phoD gene (hereafter phoD abundance) and phoD-harboring bacterial community composition (hereafter phoD-harboring BCC) in sediments from different ecological regions of Lake Taihu, the third-largest shallow freshwater lake in China, as well as explored their environmental driving factors. Results showed that phoD abundance in the sediments of Lake Taihu showed spatiotemporal heterogeneity. The highest abundance was found in macrophyte-dominated area (mean 3.25*106copies/g DW), where Haliangium and Aeromicrobium were identified as the major contributors. Due to the negative impact of Microcystis species, phoD abundance decreased significantly (by 40.28% on average) during cyanobacterial blooms in all other regions except the estuary area. The phoD abundance in sediment was positively correlated with total organic carbon (TOC) and total nitrogen (TN). However, the relationship between phoD abundance and alkaline phosphatase activity (APA) varied with time, showing positive correlation (R2 = 0.763, P < 0.01) in the early stage of cyanobacterial blooms, but not (R2 = -0.052, P = 0.838) in the later stage. The predominant phoD-harboring genera in sediments were Kribbella, Streptomyces and Lentzea, all of which belong to Actinobacteria. Non-metric multidimensional scaling (NMDS) analysis revealed that the spatial heterogeneity of phoD-harboring BCC in the sediments of Lake Taihu was significantly higher than the temporal heterogeneity. TP and sand were the principle environmental factors affecting the phoD-harboring BCC in the sediments of the estuary area, while DO, pH, organic phosphorus (Po) and diester phosphorus were the key driving factors for other lake regions. We concluded that the C, N, and P cycles in sediments might work in concert. This study extends the understanding of the phoD gene diversity in shallow lake sediments.


Assuntos
Cianobactérias , Lagos , Ecossistema , Fosfatase Alcalina , Eutrofização , Cianobactérias/genética , China , Fósforo/análise , Monitoramento Ambiental/métodos
13.
J Nat Prod ; 85(5): 1351-1362, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35544345

RESUMO

Hernandezine is isolated from an herbal medicine that selectively inhibits multidrug resistance and improves the efficacy of drugs for cancer treatment. To date, no studies on hernandezine in melanoma have been conducted. In this study, hernandezine was found to inhibit proliferation and induce apoptosis in melanoma A375 cells and B16 cells. In hernandezine-treated melanoma cells, G0/G1 cycle arrest occurred accompanied by significantly downregulated levels of phosphorylated JAK2 and STAT3. In addition, the cycle arrest could be enhanced by AG490 (JAK2 inhibitor), suggesting that the JAK2/STAT3 pathway is involved in cell cycle regulation in hernandezine-treated melanoma cells. Hernandezine-treated melanoma cells exhibited autophagy-specific structures, autophagy markers (LC3II/LC3-I), and autophagic flow over time. Moreover, 3-MA (autophagy inhibitor) significantly inhibited apoptosis, indicating that hernandezine promotes apoptosis by inducing autophagy. Combined with differential expression of P-AMPK, P-ACC (downstream targets of adenine monophosphate activated protein kinase, AMPK), and P-p70S6K (downstream targets of mammalian target of rapamycin, mTOR) and significant inhibition of apoptosis by AMPK inhibitor complex C (CC) in hernandezine-treated melanoma cells suggested that hernandezine could induce autophagy via the AMPK-mTOR pathway, thereby inducing apoptosis. This study first analyzed the effect of melanoma cells by hernandezine and provided a theory for hernandezine in the treatment of melanoma.


Assuntos
Proteínas Quinases Ativadas por AMP , Melanoma , Proteínas Quinases Ativadas por AMP/metabolismo , Apoptose , Autofagia , Benzilisoquinolinas , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Melanoma/tratamento farmacológico , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
14.
J Nat Prod ; 85(10): 2351-2362, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36256535

RESUMO

Sanggenon C is a flavonoid extracted from the root bark of white mulberry, which is a traditional Chinese medicine with anti-inflammatory, antioxidative, and antitumor pharmacological effects. In this study, sanggenon C was found to inhibit human gastric cancer (GC) cell proliferation and colony formation, induce GC cell cycle arrest in the G0-G1 phase, and promote GC cell apoptosis. Moreover, sanggenon C was found to decrease the level of mitochondrial membrane potential in GC cells and inhibit mitochondrial fission. Mechanistically, RNA sequencing, bioinformatics analysis, and a series of functional analyses confirmed that sanggenon C inhibited mitochondrial fission to induce apoptosis by blocking the extracellular regulated protein kinases (ERK) signaling pathway, and constitutive activation of ERK significantly abrogated these effects. Finally, sanggenon C was found to suppress the growth of tumor xenografts in nude mice without obvious side effects to the vital organs of animals. This study reveals that sanggenon C could be a novel therapeutic strategy for GC treatment.


Assuntos
Dinâmica Mitocondrial , Neoplasias Gástricas , Camundongos , Animais , Humanos , Neoplasias Gástricas/tratamento farmacológico , Camundongos Nus , Proteínas Quinases/farmacologia , Apoptose , Carcinogênese , Proliferação de Células , Linhagem Celular Tumoral
15.
Arch Insect Biochem Physiol ; 111(1): e21902, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35403741

RESUMO

Ledrinae is a unique group of leafhoppers with a distinct appearance. Petalocephala is the largest Ledrinae genus that is difficult to identify except by dissecting the male genitals. To date, research on Ledrinae is relatively less compared with other leafhoppers. Therefore, to better understand this group, we sequenced and analyzed three complete Petalocephala mitochondrial genomes. We comparatively analyzed these general Petalocephala genomic features (including size, AT content, AT/GC skew, 13 protein-coding gene nucleotide compositions, etc.), and predicted 22 transfer RNA secondary structures. We obtained highly consistent phylogenetic results within Cicadellidae based on mitogenomic data using the maximum likelihood and Bayesian methods. Our results showed that all subfamilies were monophyletic and had a high node support rate, and there was a sister group relationship between Ledrinae and all other leafhopper groups. Furthermore, treehoppers were found to originate from leafhoppers and showed sister group relationships with Megophthalminae. Within Ledrinae, all phylogenetic trees supporting phylogenetic relationships were as follows: ([P. dicondylica + P. gongshanensis] + [Tituria pyramidata + [Ledra auditura + P. gongshanensis]]) Based on the complete mitogenome phylogenetic analysis and the comparison of morphological characteristics, we propose that Petalocephala is not monophyletic.


Assuntos
Genoma Mitocondrial , Hemípteros , Animais , Composição de Bases , Teorema de Bayes , Filogenia
16.
Biol Pharm Bull ; 45(8): 1027-1035, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35908886

RESUMO

The reactive oxygen species (ROS) and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway play critical roles in the pathogenesis of prostate cancer by modulating cell proliferation. Picropodophyllin (PPP), an inhibitor of the insulin-like growth factor 1 receptor (IGF-1R), exerts significant antitumor effects via the PI3K/AKT signaling pathway. However, the effects of PPP on prostate cancer via ROS production and the PI3K/AKT signaling pathway remain elusive. Herein, we focused on examining the antitumor effects of PPP on DU145 and LNCaP human prostate cancer cells to determine the possible molecular mechanism. Our data indicated that the inhibitory effect of PPP on the proliferation of DU145 and LNCaP human prostate cancer cells was mediated by apoptosis induction and cell cycle blockade. Furthermore, PPP significantly influenced the expression of apoptosis-related, cell cycle, ROS production, and PI3K/AKT signaling proteins. These findings suggest that PPP can induce cell cycle arrest and apoptosis via the production of ROS and inhibition of PI3K/AKT signaling pathway, thereby suppressing the proliferation of prostate cancer cells.


Assuntos
Neoplasias da Próstata , Proteínas Proto-Oncogênicas c-akt , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Masculino , Fosfatidilinositol 3-Quinase , Fosfatidilinositol 3-Quinases/metabolismo , Podofilotoxina/análogos & derivados , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio
17.
BMC Genomics ; 22(1): 595, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34353285

RESUMO

BACKGROUND: Cannabis sativa L., a dioecious plant derived from China, demonstrates important medicinal properties and economic value worldwide. Cannabis properties have been usually harnessed depending on the sex of the plant. To analyse the genetic structure of Chinese Cannabis and identify sex-linked makers, genome-wide insertion-deletion (InDel) markers were designed and used. RESULTS: In this study, a genome-wide analysis of insertion-deletion (InDel) polymorphisms was performed based on the recent genome sequences. In total, 47,558 InDels were detected between the two varieties, and the length of InDels ranged from 4 bp to 87 bp. The most common InDels were tetranucleotides, followed by pentanucleotides. Chromosome 5 exhibited the highest number of InDels among the Cannabis chromosomes, while chromosome 10 exhibited the lowest number. Additionally, 31,802 non-redundant InDel markers were designed, and 84 primers evenly distributed in the Cannabis genome were chosen for polymorphism analysis. A total of 38 primers exhibited polymorphisms among three accessions, and of the polymorphism primers, 14 biallelic primers were further used to analyse the genetic structure. A total of 39 fragments were detected, and the PIC value ranged from 0.1209 to 0.6351. According to the InDel markers and the flowering time, the 115 Chinese germplasms were divided into two subgroups, mainly composed of cultivars obtained from the northernmost and southernmost regions, respectively. Additional two markers, "Cs-I1-10" and "Cs-I1-15", were found to amplify two bands (398 bp and 251 bp; 293 bp and 141 bp) in the male plants, while 389-bp or 293-bp bands were amplified in female plants. Using the two markers, the feminized and dioecious varieties could also be distinguished. CONCLUSION: Based on the findings obtained herein, we believe that this study will facilitate the genetic improvement and germplasm conservation of Cannabis in China, and the sex-linked InDel markers will provide accurate sex identification strategies for Cannabis breeding and production.


Assuntos
Cannabis , Cannabis/genética , China , Marcadores Genéticos , Genoma , Mutação INDEL , Melhoramento Vegetal
18.
BMC Plant Biol ; 21(1): 142, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33731002

RESUMO

BACKGROUND: Cannabis, an important industrial crop, has a high sensitivity to photoperiods. The flowering time of cannabis is one of its important agronomic traits, and has a significant effect on its yield and quality. The CONSTANS-like (COL) gene plays a key role in the regulation of flowering in this plant. However, the specific roles of the COL gene family in cannabis are still unknown. RESULTS: In this study, 13 CsCOL genes were identified in the cannabis genome. Phylogenetic analysis implied that the CsCOL proteins were divided into three subgroups, and each subgroup included conserved intron/exon structures and motifs. Chromosome distribution analysis showed that 13 CsCOL genes were unevenly distributed on 7 chromosomes, with chromosome 10 having the most CsCOL members. Collinearity analysis showed that two syntenic gene pairs of CsCOL4 and CsCOL11 were found in both rice and Gossypium raimondii. Of the 13 CsCOL genes, CsCOL6 and CsCOL12 were a pair of tandem duplicated genes, whereas CsCOL8 and CsCOL11 may have resulted from segmental duplication. Furthermore, tissue-specific expression showed that 10 CsCOL genes were preferentially expressed in the leaves, 1 CsCOL in the stem, and 2 CsCOL in the female flower. Most CsCOL exhibited a diurnal oscillation pattern under different light treatment. Additionally, sequence analysis showed that CsCOL3 and CsCOL7 exhibited amino acid differences among the early-flowering and late flowering cultivars. CONCLUSION: This study provided insight into the potential functions of CsCOL genes, and highlighted their roles in the regulation of flowering time in cannabis. Our results laid a foundation for the further elucidation of the functions of COL genes in cannabis.


Assuntos
Cannabis/genética , Flores/genética , Genes de Plantas , Mapeamento Cromossômico , Cromossomos de Plantas , Perfilação da Expressão Gênica , Genoma de Planta , Família Multigênica , Filogenia
19.
Opt Express ; 29(6): 8510-8522, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33820297

RESUMO

Broadband light absorbers are attractive for their applications in photodetection and thermo-photovoltaics. Metal-black porous coatings have been experimentally proven to have broadband light absorption. However, a theoretical model is of importance for the design and fabrication of metal-black absorbers. Here we propose a three-dimensional cluster-structure model to simulate the absorption of metal-black films. Based on experimental data, a model of uniform clusters formed by nanoparticles with Gaussian random distribution in position was constructed for the gold-black absorbers. The absorption spectra were simulated with this model by finite-difference time-domain method. The gold-black absorbers were fabricated by the one-step magnetron sputtering process. The average absorption of gold-black absorbers with sputtering pressure of 50, 65 and 80 Pa were 72.34%, 87.25% and 91.08% in the visible spectral range and 81.77% (80 Pa) in 3-12 µm infrared spectrum. The high broadband absorption was attributed to the multiple scattering of incident light inside the gold-black porous structure. The simulations showed good agreements with experimental results with an error of 2.35% in visible spectrum and 1.82% in 3-12 µm infrared spectrum. To verify the applicability of this model, aluminum-black absorbers with different thicknesses were fabricated, and the absorption error between simulation and experimental results was 3.96%. This cluster model can be a good tool to design ultrabroadband absorbers based on metal-black porous structures.

20.
J Asian Nat Prod Res ; 23(4): 392-398, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32189519

RESUMO

One new phenolic glycoside, methyl 3,4-dihydroxyphenylacetate-4-O-[2-O-ß-D-apisoyl-6-O-(2-hydroxybenzoyl)]-ß-D-glucopyranoside (1), together with 10 known compounds (2-11), were isolated from the roots of Datura metel. The structures of these compounds were elucidated on the basis of their spectroscopic data. Furthermore, the in vitro anti-inflammatory activities of compounds 1-11 were evaluated.[Formula: see text].


Assuntos
Datura metel , Anti-Inflamatórios/farmacologia , Glicosídeos , Estrutura Molecular , Raízes de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA