Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(6)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38541543

RESUMO

Recently, short-fiber-reinforced thermoplastic composites (SFRTPCs) have been playing a more and more crucial role in the application of automotive interior materials due to their advantages of low density and environmental resistance properties. However, their relevant mechanical properties need to be optimized. Previous investigations revealed that the surface modification of fibers is useful to improve their mechanical properties. In this work, carbon fiber (CF)-reinforced polylactic acid (PLA) composites modified with MXene and graphene oxide (GO) were prepared by twin-screw extrusion and injection molding methods. Short CF was firstly modified with polyetherimide (PEI), then different weight ratios of MXene-GO (1:1) were subsequently modified on PEI-CF. Finally, the flexural properties and failure mechanisms were analyzed. The results showed that MXene-GO was successfully coated on CF surface, and the flexural strength and modulus of CF-PEI-MXene-GO-reinforced PLA (CF-PEI-MG/PLA) composite were improved compared to that of CF/PLA composite. In addition, the fracture sections of the composites were flat and white, and the fibers bonded well with PLA for CF-PEI-0.1MG/PLA composite compared to CF/PLA composite. The present study could provide a reference for further improving the mechanical performance of PLA-related composites.

2.
ACS Appl Mater Interfaces ; 16(4): 4708-4718, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38231566

RESUMO

Sodium metal batteries (SMBs) have high-density and cost-effective characteristics as one of the energy storage systems, but uncontrollable dendrite growth and poor rate performance still hinder their practical applications. Herein, a nitrogen-rich modified cellulose separator with released abundant ion transport tunnels in organic electrolyte was synthesized by in situ polymerization of polypyrrole, which is based on the high permeability of cellulose in aqueous solution and the interfacial interaction between cellulose and polypyrrole. Meanwhile, the introduction of abundant structural defects such as branch chains, oxygen-containing functional groups, and imine-like structure to disrupt polypyrrole conjugation enables the utilization of conductive polymers in composite separator applications. With the electrolyte affinity surface on, the modified separator exhibits reinforced electrolyte uptake (254%) and extended electrolyte wettability, thereby leading to accelerated ionic conductivity (2.77 mS cm-1) and homogeneous sodium deposition by facilitating the establishment of additional pathways for ion transport. Benefiting from nitrogen-rich groups, the polypyrrole-modified separator demonstrates selective Na+ transport by the data of improved Na+ transference number (0.62). Owing to the above advantages, the battery assembled with the modified separators exhibits outstanding rate performance and prominent capacity retention two times that of the pristine cellulose separator at a high current density under the condition of fluorine-free electrolyte.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA