Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36834874

RESUMO

Natural enemies such as parasitoids and parasites depend on sensitive olfactory to search for their specific hosts. Herbivore-induced plant volatiles (HIPVs) are vital components in providing host information for many natural enemies of herbivores. However, the olfactory-related proteins involved in the recognition of HIPVs are rarely reported. In this study, we established an exhaustive tissue and developmental expression profile of odorant-binding proteins (OBPs) from Dastarcus helophoroides, an essential natural enemy in the forestry ecosystem. Twenty DhelOBPs displayed various expression patterns in different organs and adult physiological states, suggesting a potential involvement in olfactory perception. In silico AlphaFold2-based modeling and molecular docking showed similar binding energies between six DhelOBPs (DhelOBP4, 5, 6, 14, 18, and 20) and HIPVs from Pinus massoniana. While in vitro fluorescence competitive binding assays showed only recombinant DhelOBP4, the most highly expressed in the antennae of emerging adults could bind to HIPVs with high binding affinities. RNAi-mediated behavioral assays indicated that DhelOBP4 was an essential functional protein for D. helophoroides adults recognizing two behaviorally attractive substances: p-cymene and γ-terpinene. Further binding conformation analyses revealed that Phe 54, Val 56, and Phe 71 might be the key binding sites for DhelOBP4 interacting with HIPVs. In conclusion, our results provide an essential molecular basis for the olfactory perception of D. helophoroides and reliable evidence for recognizing the HIPVs of natural enemies from insect OBPs' perspective.


Assuntos
Besouros , Receptores Odorantes , Animais , Herbivoria , Ecossistema , Simulação de Acoplamento Molecular , Besouros/metabolismo , Receptores Odorantes/metabolismo , Proteínas de Insetos/metabolismo , Antenas de Artrópodes/metabolismo
2.
J Chem Ecol ; 43(11-12): 1033-1045, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29063475

RESUMO

In light of reverse chemical ecology, the fluorescence competitive binding assays of functional odorant binding proteins (OBPs) is a recent advanced approach for screening behaviorally active compounds of insects. Previous research on Dastareus helophoroides identified a minus-C OBP, DhelOBP21, which preferably binds to several ligands. In this study, only (+)-ß-pinene proved attractive to unmated adult beetles. To obtain a more in-depth explanation of the lack of behavioral activity of other ligands we selected compounds with high (camphor) and low (ß-caryophyllene) binding affinities. The structural transformation of OBPs was investigated using well-established approaches for studying binding processes, such as fluorescent quenching assays, circular dichroism, and molecular dynamics. The dynamic binding process revealed that the flexibility of DhelOBP21 seems conducive to binding specific ligands, as opposed to broad substrate binding. The compound (+)-ß-pinene and DhelOBP21 formed a stable complex through a secondary structural transformation of DhelOBP21, in which its amino-terminus transformed from random coil to an α-helix to cover the binding pocket. On the other hand, camphor could not efficiently induce a stable structural transformation, and its high binding affinities were due to strong hydrogen-bonding, compromising the structure of the protein. The other compound, ß-caryophyllene, only collided with DhelOBP21 and could not be positioned in the binding pocket. Studying structural transformation of these proteins through examining the dynamic binding process rather than using approaches that just measure binding affinities such as fluorescence competitive binding assays can provide a more efficient and reliable approach for screening behaviorally active compounds.


Assuntos
Besouros/metabolismo , Proteínas de Insetos/metabolismo , Receptores Odorantes/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Monoterpenos Bicíclicos , Sítios de Ligação , Compostos Bicíclicos com Pontes/química , Compostos Bicíclicos com Pontes/metabolismo , Compostos Bicíclicos com Pontes/farmacologia , Dicroísmo Circular , Proteínas de Insetos/química , Proteínas de Insetos/genética , Simulação de Dinâmica Molecular , Monoterpenos/química , Monoterpenos/metabolismo , Monoterpenos/farmacologia , Sesquiterpenos Policíclicos , Interferência de RNA , RNA de Cadeia Dupla/metabolismo , Receptores Odorantes/química , Receptores Odorantes/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Sesquiterpenos/química , Sesquiterpenos/metabolismo , Sesquiterpenos/farmacologia , Espectrometria de Fluorescência
3.
Insect Biochem Mol Biol ; 140: 103677, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34763091

RESUMO

Insect odorant-binding proteins (OBPs) are a class of small soluble proteins that can be found in various tissues wherein binding and transport of small molecules are required. Thus, OBPs are not only involved in typical olfactory function by specific activities with odorants but also participate in other physiological processes in non-chemosensory tissues. To better understand the complex biological functions of OBPs, it is necessary to study the transcriptional regulation of their expression patterns. In this paper, an apparent gradient expression pattern of Obp19, that was highly and specifically expressed in antennae and played an essential role in the detection of camphene, was defined in the antennae of the Japanese pine sawyer. Further, the transcription factor BarH1, that also presented gradient expression pattern in antennae, was found to regulate expression of Obp19 directly through binding to its upstream DNA sequence. The condition of BarH1 gene silence, the gene expression levels of Obp19 significantly decreased. At the same time, additional olfactory genes also were regulated and thus influence camphene reception. These findings provide us an opportunity to incorporate Obps in the gene regulatory networks of insects, which contribute to a better understanding of the multiplicity and diversity of OBPs and the olfactory mediated behaviors.


Assuntos
Besouros , Percepção Olfatória , Receptores Odorantes , Animais , Antenas de Artrópodes/metabolismo , Besouros/genética , Besouros/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Perfilação da Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Insetos/genética , Insetos/metabolismo , Percepção Olfatória/genética , Receptores Odorantes/metabolismo , Olfato/genética
4.
Artigo em Inglês | MEDLINE | ID: mdl-34747415

RESUMO

AIMS: By measuring the extent of cytokines secreted by human dental pulp stem cells (hDPSCs) from passages 2 through 10, the optimal passage of hDPSCs was determined. This offers a potential theoretical basis for the treatment of neurological disorders. METHOD: After isolation and culture of hDPSCs from human teeth, the morphological features of the cells were observed under an inverted microscope. hDPSCs were identified by their immunophenotypes and their multiple differentiation capability. Cytokine concentrations secreted in the supernatants at passages 2-10 were detected by ELISA. RESULTS: hDPSCs were viewed as fusiform or polygonal in shape, with a bulging cell body, homogenized cytoplasm, and a clear nucleus. Moreover, they could differentiate into neuroblasts in vitro. hDPSCs at passage 3 were positive for CD29 (91.5%), CD73 (94.8%) and CD90 (96.7%), but negative for the hematopoietic markers CD34 (0.13%). ELISA results showed that hDPSCs at passage 3 had the highest secretion levels of vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor (BDNF), and nerve growth factor (NGF), with the highest secretion level of Neurotrophin-3 (NT-3) being at passage 2. CONCLUSION: hDPSCs have steady biological features of stem cells and exhibit optimal proliferation potential. hDPSCs at different passages have different capacities in the secretion of VEGF, BDNF, NGF, and NT-3. In conclusion cytokines secreted by hDPSCs may prove to be appropriate in the treatment of neurological diseases.


Assuntos
Diferenciação Celular , Citocinas , Células-Tronco , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proliferação de Células , Células Cultivadas , Citocinas/metabolismo , Polpa Dentária/citologia , Humanos , Fator de Crescimento Neural/metabolismo , Neurotrofina 3/metabolismo , Células-Tronco/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
5.
Front Physiol ; 11: 317, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32351402

RESUMO

Odorant-binding proteins (OBPs) are important for the perception of chemical signals by insects. Effective pest management strategies can be developed by understanding the host location mechanism and the physiological functions of OBPs in olfactory detection. In this study, we cloned two OBPs from Monochamus alternatus, where MaltOBP9 was highly expressed in multiple insect tissues and MaltOBP10 was highly expressed in the female antenna according to the results of qRT-PCR. The recombinant proteins were successfully purified in vitro. Immunocytochemistry indicated the high expression of MaltOBP9 and MaltOBP10 in the sensillum lymph of sensilla basiconica, sensilla trichodea, sensilla auricillica, and sensilla chaetica, thereby demonstrating their broad participation in semiochemical detection. Both proteins were localized in the inner cavity of mechanoreceptors and they exhibited broad binding abilities with volatiles from pine bark according to fluorescence competitive binding assays. Due to its broad binding ability and distribution, MaltOBP9 may be involved in various physiological processes as well as olfactory detection. MaltOBP10 appears to play a role in the fundamental olfactory recognition process of female adults according to its broad binding ability. These findings suggest that OBPs may have various physiological functions in insects, thereby providing novel insights into the olfactory receptive mechanism.

6.
Sci Rep ; 8(1): 13506, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30202068

RESUMO

Odorant-binding proteins (OBPs) play a pivotal role in transporting odorants through the sensillar lymph of insect chemosensory sensilla and increasing the sensitivity of the olfactory system. To address the ligand binding, activation, and release mechanisms of OBPs, we performed a set of conventional molecular dynamics simulations for binding of the odorant-binding protein DhelOBP21 from Dastarcus helophoroides with 18 ligands (1-NPN and 17 volatiles), as well as four constant-pH molecular dynamics simulations. We found that the open pocket DhelOBP21 at pH 5.0 could bind volatiles and form a closed pocket complex via transformation of its N-terminus into regular Helix at pH 7.0 and vice versa. Moreover, the discrimination of volatiles (selectivity and promiscuity) was determined by the characteristics of both the volatiles and the 'essential' and 'selective' amino acid residues in OBP binding pockets, rather than the binding affinity of the volatiles. This study put forward a new hypothesis that during the binding of volatiles there are two transitions for the DhelOBP21 amino-terminus: pH- and odorant binding-dependent random-coil-to-helix. Another important finding is providing a framework for the exploration of the complete coil-to-helix transition process and theoretically analyzing its underlying causes at molecular level.


Assuntos
Besouros/fisiologia , Proteínas de Insetos/metabolismo , Odorantes , Receptores Odorantes/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Insetos/química , Simulação de Dinâmica Molecular , Ligação Proteica , Estrutura Secundária de Proteína/fisiologia , Receptores Odorantes/química , Homologia de Sequência do Ácido Nucleico , Olfato/fisiologia
7.
Int J Biol Macromol ; 107(Pt B): 2667-2678, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29113892

RESUMO

Reverse chemical ecology approaches based on the recognition and transport function of odorant binding proteins (OBPs) have been used to screen behaviorally active compounds of insects. In the first place, behaviorally active compounds from Sclerodermus sp., an important ectoparasite of Monochamus alternatus Hope, were screened by SspOBP7. The Fluorescence quenching assays revealed that only six of 19 ligands that had binding affinities in fluorescence competition-binding assays formed complexes with SspOBP7. Pursuing this further, two non-polar ligands, terpinolene and (+)-α-longipinene showed strong attractant activities for Sclerodermus sp. The pH change could lead to conformational transition of SspOBP7 from one state to another, which results in low binding affinities at low pH. Finally, a mutational analysis of the SspOBP7 binding cavity proved that changing the cavity had a greater effect on non-polar ligands, and the specific recognition of ligands by SspOBP7 might depend mainly on the appropriate shapes of the cavity and ligands. The most obvious finding to emerge from this work is that the use of fluorescence quenching to study the binding mechanism of OBPs could aid reverse chemical ecology approaches by narrowing the scope of candidate behaviorally active compounds.


Assuntos
Besouros/genética , Proteínas de Insetos/metabolismo , Receptores Odorantes/metabolismo , Animais , Dicroísmo Circular , Clonagem Molecular , Eletroforese em Gel de Poliacrilamida , Fluorescência , Ligação de Hidrogênio , Proteínas de Insetos/genética , Cinética , Ligantes , Proteínas Mutantes/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/isolamento & purificação
8.
Sci Rep ; 6: 33981, 2016 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-27659921

RESUMO

Odorant binding proteins (OBPs) transport hydrophobic odorants from the environment to odorant receptors and play an important role in specific recognition of volatiles. Here, we expressed and purified a minus-C OBP, BhorOBPm2, from Batocera horsfieldi, a major pest of Popolus, to determine its binding characteristics with 58 candidate volatiles using a fluorescence competition-binding assay. We showed that BhorOBPm2 exhibited high binding affinity with chain volatiles and that ligands were selected based on chain length. In order to elucidate the binding mechanism, homology modeling and molecular-docking experiments were performed to investigate interactions between BhorOBPm2 and volatiles. The predicted structure with only two disulfide bonds showed one continuous channel for ligand binding, similar to classic OBPs AgamOBP1 and CquiOBP1. Unexpectedly, we observed a larger binding pocket for BhorOBPm2 and broader specificity for ligands than classic OBPs due to the expansive flexibility of BhorOBPm2 resulting from a lack of disulfide bonds. These findings suggested that BhorOBPm2 might present an intermediate structure in the evolution of OBPs. Furthermore, we designed two mutant proteins to simulate and verify functions of the C-terminal region. The changes in binding affinity observed here indicated a novel action differing from that of the "lid" described in previous studies.

9.
Int J Biol Sci ; 11(11): 1281-95, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26435694

RESUMO

Odorant binding proteins (OBPs) transport hydrophobic odor molecules across the sensillar lymph to trigger a neuronal response. Herein, the Minus-C OBP (DhelOBP21) was characterized from Dastarcus helophoroides, the most important natural parasitic enemy insect that targets Monochamus alternatus. Homology modeling and molecular docking were conducted on the interaction between DhelOBP21 and 17 volatile molecules (including volatiles from pine bark, the larva of M. alternatus, and the faeces of the larva). The predicted three-dimensional structure showed only two disulfide bridges and a hydrophobic binding cavity with a short C-terminus. Ligand-binding experiments using N-phenylnaphthylamine (1-NPN) as a fluorescent probe showed that DhelOBP21 exhibited better binding affinities against those ligands with a molecular volume between 100 and 125 Å(³) compared with ligands with a molecular volume between 160 and 185 Å(³). Molecules that are too big or too small are not conducive for binding. We mutated the amino acid residues of the binding cavity to increase either hydrophobicity or hydrophilia. Ligand-binding experiments and cyber molecular docking assays indicated that hydrophobic interactions are more significant than hydrogen-bonding interactions. Although hydrogen-bond interactions could be predicted for some binding complexes, the hydrophobic interactions had more influence on binding following hydrophobic changes that affected the cavity. The orientation of ligands affects binding by influencing hydrophobic interactions. The binding process is controlled by multiple factors. This study provides a basis to explore the ligand-binding mechanisms of Minus-C OBP.


Assuntos
Besouros/metabolismo , Receptores Odorantes/metabolismo , Animais , Interações Hidrofóbicas e Hidrofílicas , Mutagênese Sítio-Dirigida , Reação em Cadeia da Polimerase
10.
Artigo em Inglês | MEDLINE | ID: mdl-24893337

RESUMO

We assembled antennal transcriptomes of pest Monochamus alternatus and its parasitoid Dastarcus helophoroides to identify the members of the major chemosensory multi-gene families. Gene ontology (GO) annotation indicated that the relative abundance of transcripts associated with specific GO terms was highly similar in the two species. In chemosensory gene families, we identified 52 transcripts encoding putative odorant-binding proteins (OBPs), 19 chemosensory proteins (CSPs), 10 olfactory receptors (ORs), 8 ionotropic receptors (IRs), 2 gustatory receptors (GRs), and 5 sensory neuron membrane proteins (SNMPs) in these two transcriptomes. Predicted protein sequences were compared with Dendroctonus ponderosae, Tribolium castaneum and Drosophila melanogaster. The results of phylogenetic trees showed that some clusters included only OBPs or CSPs from D. helophoroides, some clusters included only OBPs or CSPs from M. alternatus, while some clusters included OBPs or CSPs from both M. alternatus and D. helophoroides. The identification of the chemosensory genes and the phylogenetic relationship of these genes between two species might provide new ideas for controlling M. alternatus and improving current strategies for biological control.


Assuntos
Besouros/genética , Proteínas de Insetos/genética , Receptores Odorantes/genética , Animais , Antenas de Artrópodes/química , Besouros/química , Feminino , Proteínas de Insetos/química , Proteínas de Insetos/classificação , Masculino , Anotação de Sequência Molecular , Filogenia , Receptores Odorantes/química , Receptores Odorantes/classificação , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA