Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
1.
Development ; 149(8)2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35333325

RESUMO

Eosinophils, best known for their role in anti-parasitic responses, have recently been shown to actively participate in tissue homeostasis and repair. Their regulation must be tightly controlled, as their absence or hyperplasia is associated with chronic disease (e.g. asthma or inflammatory bowel disease). In the context of skeletal muscle, eosinophils play a supportive role after acute damage. Indeed, their depletion leads to strong defects in skeletal muscle regeneration and, in the absence of eosinophil-secreted interleukin (IL) 4 and IL13, fibro-adipogenic progenitors fail to support muscle stem cell proliferation. However, the role of eosinophils in muscular dystrophy remains elusive. Although it has been shown that eosinophils are present in higher numbers in muscles from mdx mice (a mouse model for Duchenne muscular dystrophy), their depletion does not affect muscle histopathology at an early age. Here, we evaluated the impact of hyper-eosinophilia on the development of fibrofatty infiltration in aged mdx mice and found that muscle eosinophilia leads to defects in muscle homeostasis, regeneration and repair, and eventually hastens death.


Assuntos
Distrofia Muscular de Duchenne , Animais , Modelos Animais de Doenças , Eosinófilos/metabolismo , Eosinófilos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia
2.
FASEB J ; 38(13): e23706, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38877842

RESUMO

The etiology of preeclampsia (PE), a complex and multifactorial condition, remains incompletely understood. DNA methylation, which is primarily regulated by three DNA methyltransferases (DNMTs), DNMT1, DNMT3A, and DNMT3B, plays a vital role in early embryonic development and trophectoderm differentiation. Yet, how DNMTs modulate trophoblast fusion and PE development remains unclear. In this study, we found that the DNMTs expression was downregulated during trophoblast cells fusion. Downregulation of DNMTs was observed during the reconstruction of the denuded syncytiotrophoblast (STB) layer of placental explants. Additionally, overexpression of DNMTs inhibited trophoblast fusion. Conversely, treatment with the DNA methylation inhibitor 5-aza-CdR decreased the expression of DNMTs and promoted trophoblast fusion. A combined analysis of DNA methylation data and gene transcriptome data obtained from the primary cytotrophoblasts (CTBs) fusion process identified 104 potential methylation-regulated differentially expressed genes (MeDEGs) with upregulated expression due to DNA demethylation, including CD59, TNFAIP3, SDC1, and CDK6. The transcription regulation region (TRR) of TNFAIP3 showed a hypomethylation with induction of 5-aza-CdR, which facilitated CREB recruitment and thereby participated in regulating trophoblast fusion. More importantly, clinical correlation analysis of PE showed that the abnormal increase in DNMTs may be involved in the development of PE. This study identified placental DNA methylation-regulated genes that may contribute to PE, offering a novel perspective on the role of epigenetics in trophoblast fusion and its implication in PE development.


Assuntos
DNA (Citosina-5-)-Metiltransferases , Metilação de DNA , Pré-Eclâmpsia , Trofoblastos , Trofoblastos/metabolismo , Feminino , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/patologia , Gravidez , Humanos , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Fusão Celular , Placenta/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/genética
3.
J Infect Dis ; 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39215587

RESUMO

Gullain-Barré syndrome (GBS) is an acute peripheral neuropathy often preceded by respiratory or gastrointestinal infections, though molecular testing of cerebrospinal fluid (CSF) is often inconclusive. In a recent case of severe pediatric GBS in British Columbia, Canada, we detected CSF antibodies against enterovirus D (EV-D) to link GBS with prior EV-D68 respiratory infection.

4.
Biol Reprod ; 111(2): 414-426, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38647664

RESUMO

OBJECTIVE: The purpose of this study is to investigate the role of high mobility group protein B1 (HMGB1) in placental development and fetal growth. METHODS: We employed the Cre-loxP recombination system to establish a placenta-specific HMGB1 knockout mouse model. Breeding HMGB1flox/flox mice with Elf5-Cre mice facilitated the knockout, leveraging Elf5 expression in extra-embryonic ectoderm, ectoplacental cone, and trophoblast giant cells at 12.5 days of embryonic development. The primary goal of this model was to elucidate the molecular mechanism of HMGB1 in placental development, assessing parameters such as placental weight, fetal weight, and bone development. Additionally, we utilized lentiviral interference and overexpression of HMGB1 in human trophoblast cells to further investigate HMGB1's functional role. RESULTS: Our findings indicate that the HMGB1flox/floxElf5cre/+ mouse displays fetal growth restriction, characterized by decreased placental and fetal weight and impaired bone development. The absence of HMGB1 inhibits autophagosome formation, impairs lysosomal degradation, and disrupts autophagic flux. Depletion of HMGB1 in human trophoblast cells also suppresses cell viability, proliferation, migration, and invasion by inhibiting the ERK signaling pathway. Overexpression of HMGB1 observed the opposite phenotypes. CONCLUSIONS: HMGB1 participates in the regulation of autophagy through the ERK signaling pathway and affects placental development.


Assuntos
Autofagia , Proteína HMGB1 , Sistema de Sinalização das MAP Quinases , Placenta , Trofoblastos , Animais , Feminino , Humanos , Camundongos , Gravidez , Autofagia/fisiologia , Proteína HMGB1/metabolismo , Proteína HMGB1/genética , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos Knockout , Placenta/metabolismo , Placentação/fisiologia , Trofoblastos/metabolismo , Trofoblastos/fisiologia , Masculino
5.
Hum Reprod ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38725195

RESUMO

STUDY QUESTION: Can exposure to palmitic acid (PA), a common saturated fatty acid, modulate autophagy in both human and mouse trophoblast cells through the regulation of acyl-coenzyme A-binding protein (ACBP)? SUMMARY ANSWER: PA exposure before and during pregnancy impairs placental development through mechanisms involving placental autophagy and ACBP expression. WHAT IS KNOWN ALREADY: High-fat diets, including PA, have been implicated in adverse effects on human placental and fetal development. Despite this recognition, the precise molecular mechanisms underlying these effects are not fully understood. STUDY DESIGN, SIZE, DURATION: Extravillous trophoblast (EVT) cell line HTR-8/SVneo and human trophoblast stem cell (hTSC)-derived EVT (hTSCs-EVT) were exposed to PA or vehicle control for 24 h. Female wild-type C57BL/6 mice were divided into PA and control groups (n = 10 per group) and subjected to a 12-week dietary intervention. Afterward, they were mated with male wild-type C57BL/6 mice and euthanized on Day 14 of gestation. Female ACBPflox/flox mice were also randomly assigned to control and PA-exposed groups (each with 10 mice), undergoing the same dietary intervention and mating with ACBPflox/floxELF5-Cre male mice, followed by euthanasia on Day 14 of gestation. The study assessed the effects of PA on mouse embryonic development and placental autophagy. Additionally, the role of ACBP in the pathogenesis of PA-induced placental toxicity was investigated. PARTICIPANTS/MATERIALS, SETTING, METHODS: The findings were validated using real-time PCR, Western blot, immunofluorescence, transmission electron microscopy, and shRNA knockdown approaches. MAIN RESULTS AND THE ROLE OF CHANCE: Exposure to PA-upregulated ACBP expression in both human HTR-8/SVneo cells and hTSCs-EVT, as well as in mouse placenta. PA exposure also induced autophagic dysfunction in HTR-8/SVneo cells, hTSCs-EVT, and mouse placenta. Through studies on ACBP placental conditional knockout mice and ACBP knockdown human trophoblast cells, it was revealed that reduced ACBP expression led to trophoblast malfunction and affected the expression of autophagy-related proteins LC3B-II and P62, thereby impacting embryonic development. Conversely, ACBP knockdown partially mitigated PA-induced impairment of placental trophoblast autophagy, observed both in vitro in human trophoblast cells and in vivo in mice. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: Primary EVT cells from early pregnancy are fragile, limiting research use. Maintaining their viability is tough, affecting data reliability. The study lacks depth to explore PA diet cessation effects after 12 weeks. Without follow-up, understanding postdiet impacts on pregnancy stages is incomplete. Placental abnormalities linked to elevated PA diet in embryos lack confirmation due to absence of control groups. Clarifying if issues stem solely from PA exposure is difficult without proper controls. WIDER IMPLICATIONS OF THE FINDINGS: Consuming a high-fat diet before and during pregnancy may result in complications or challenges in successfully carrying the pregnancy to term. It suggests that such dietary habits can have detrimental effects on the health of both the mother and the developing fetus. STUDY FUNDING/COMPETING INTEREST(S): This work was supported in part by the National Natural Science Foundation of China (82171664, 82301909) and the Natural Science Foundation of Chongqing Municipality of China (CSTB2022NS·CQ-LZX0062, cstc2019jcyj-msxmX0749, and cstc2021jcyj-msxmX0236). The authors declare that they have no conflict of interest. TRIAL REGISTRATION NUMBER: N/A.

6.
Bioorg Chem ; 150: 107539, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38861912

RESUMO

Hepatocellular carcinoma (HCC) is a malignant tumor that occurs in the liver, with a high degree of malignancy and relatively poor prognosis. Gypenoside L has inhibitory effects on liver cancer cells. However, its mechanism of action is still unclear. This study aims to investigate the inhibitory effects of gypenoside L on HCC in vitro and in vivo, and explore its potential mechanisms. The results showed that gypenoside L reduced the cholesterol and triglyceride content in HepG2 and Huh-7 cells, inhibited cell proliferation, invasion and metastasis, arrested cell cycle at G0/G1 phase, promoted cell apoptosis. Mechanistically, it targeted the transcription factor SREPB2 to inhibit the expression of HMGCS1 protein and inhibited the downstream proteins HMGCR and MVK, thereby regulating the mevalonate (MVA) pathway. Overexpression HMGCS1 led to significant alterations in the cholesterol metabolism pathway of HCC, which mediated HCC cell proliferation and conferred resistance to the therapeutic effect of gypenoside L. In vivo, gypenoside L effectively suppressed HCC growth in tumor-bearing mice by reducing cholesterol production, exhibiting favorable safety profiles and minimal toxic side effects. Gypenoside L modulated cholesterol homeostasis, enhanced expression of inflammatory factors by regulating MHC I pathway-related proteins to augment anticancer immune responses. Clinical samples from HCC patients also exhibited high expression levels of MVA pathway-related genes in tumor tissues. These findings highlight gypenoside L as a promising agent for targeting cholesterol metabolism in HCC while emphasizing the effectiveness of regulating the SREBP2-HMGCS1 axis as a therapeutic strategy.


Assuntos
Carcinoma Hepatocelular , Proliferação de Células , Gynostemma , Neoplasias Hepáticas , Proteína de Ligação a Elemento Regulador de Esterol 2 , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Gynostemma/química , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/antagonistas & inibidores , Proliferação de Células/efeitos dos fármacos , Animais , Camundongos , Relação Dose-Resposta a Droga , Estrutura Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Apoptose/efeitos dos fármacos , Relação Estrutura-Atividade , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Neoplasias Hepáticas Experimentais/patologia , Neoplasias Hepáticas Experimentais/metabolismo , Extratos Vegetais
7.
Acta Pharmacol Sin ; 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39313516

RESUMO

Adaptor proteins play crucial roles in signal transduction across diverse signaling pathways. Src-homology 2 domain-containing E (SH2E) is the adaptor protein highly expressed in vascular endothelial cells and myocardium during zebrafish embryogenesis. In this study we investigated the function and mechanisms of SH2E in cardiogenesis. We first analyzed the spatiotemporal expression of SH2E and then constructed zebrafish lines with SH2E deficiency using the CRISPR-Cas9 system. We showed that homozygous mutants developed progressive pericardial edema (PCE), dilated atrium, abnormal atrioventricular looping and thickened atrioventricular wall from 3 days post fertilization (dpf) until death; inducible overexpression of SH2E was able to partially rescue the PCE phenotype. Using transcriptome sequencing analysis, we demonstrated that the MAPK/ERK and NF-κB signaling pathways might be involved in SH2E-deficiency-caused PCE. This study underscores the pivotal role of SH2E in cardiogenesis, and might help to identify innovative diagnostic techniques and therapeutic strategies for congenital heart disease.

8.
Angew Chem Int Ed Engl ; : e202414149, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39237460

RESUMO

Metal clusters, due to their small dimensions, contain a high proportion of surface atoms, thus possessing a significantly improved catalytic activity compared with their bulk counterparts and nanoparticles. Defective and modified carbon supports are effective in stabilizing metal clusters, however, the synthesis of isolated metal clusters still requires multiple steps and harsh conditions. Herein, we develop a C60 fullerene-driven spontaneous metal deposition process, where C60 serves as both a reductant and an anchor, to achieve uniform metal (Rh, Ir, Pt, Pd, Au and Ru) clusters without the need for any defects or functional groups on C60. Density functional theory calculations reveal that C60 possesses multiple strong metal adsorption sites, which favors stable and uniform deposition of metal atoms. In addition, owing to the electron-withdrawing properties of C60, the electronic structures of metal clusters are effectively regulated, not only optimizing the adsorption behavior of reaction intermediates but also accelerating the kinetics of hydrogen evolution reaction. The synthesized Ru/C60-300 exhibits remarkable performance for hydrogen evolution in an alkaline condition. This study demonstrates a facile and efficient method for synthesizing effective fullerene-supported metal cluster catalysts without any pretreatment and additional reducing agent.

9.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(10): 1053-1057, 2024 Oct 15.
Artigo em Chinês | MEDLINE | ID: mdl-39467674

RESUMO

OBJECTIVES: To investigate the early cognitive development characteristics of children with Williams syndrome (WS) at different age stages. METHODS: From September 2018 to June 2023, 106 children diagnosed with WS at the Department of Pediatric Health Care, Children's Hospital, Zhejiang University School of Medicine, aged 1 to <5 years, were prospectively enrolled. All children underwent Gesell developmental diagnostic assessments to analyze the cognitive development characteristics of WS children across different age groups. RESULTS: The average age of the 106 WS children was (3.1±1.2) years; 58 were male, and 48 were female. There were no significant differences in developmental levels between males and females in the five domains of gross motor skills, fine motor skills, language, personal-social skills, and adaptive behavior (P>0.05). The incidence rates of mild, moderate, severe, and profound developmental disabilities among children of different age groups showed no significant differences (P>0.05). Comparisons of developmental levels in gross motor skills, language, personal-social skills, and adaptive behavior among different age groups were also not statistically significant (P>0.05). With the increase of age, the developmental level of fine motor skills showed a decreasing trend (P<0.05). There were no significant differences in verbal IQ and non-verbal IQ within each age group of WS children (P>0.05). CONCLUSIONS: The overall developmental level of WS children stabilizes with age, and their early language abilities do not significantly exceed their non-verbal abilities.


Assuntos
Desenvolvimento Infantil , Cognição , Síndrome de Williams , Humanos , Síndrome de Williams/fisiopatologia , Feminino , Masculino , Pré-Escolar , Estudos Prospectivos , Lactente , Destreza Motora/fisiologia , Estudos de Coortes
10.
J Org Chem ; 88(7): 4234-4243, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-36989519

RESUMO

Herein, we performed the reactions of M3N@Ih-C80 (M = Sc and Lu) with the methanol (CH3OH) solution of TBAOH (note that both CH3O- and OH- are nucleophiles) in benzonitrile (PhCN) and dimethylformamide, respectively. It is found that OH- ions rather than CH3O- ions selectively attacked the fullerene cage to form the M3N@C80--O- intermediate. Although the fullerene cage is initially attacked by OH- in both PhCN and DMF solvents, the products are quite different. In PhCN, two isomeric Sc3N@Ih-C80 fullerooxazoline heterocyclic products (1 and 2) were synthesized. Whereas, in DMF, an epoxide of Lu3N@Ih-C80 (3) was obtained. The preference for fullerooxazoline formation over that of fullerene epoxy in PhCN is well explained by density functional theory calculations. Plausible reaction mechanisms for the formation of metallofullerene oxazoline and epoxide were proposed based on the experimental and theoretical results.

11.
J Assist Reprod Genet ; 40(11): 2725-2737, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37610607

RESUMO

PURPOSE: Fetal growth restriction (FGR) is a common complication characterized by impaired placental function and unfavorable pregnancy outcomes. This study aims to elucidate the expression pattern of miR-181d-5p in FGR placentas and explore its effects on trophoblast fusion. METHODS: The expression pattern of miR-181d-5p in human FGR placentas were evaluated using qRT-PCR. Western blot, qRT-PCR, and Immunofluorescence analysis were performed in a Forskolin (FSK)-induced BeWo cell fusion model following the transfection of miR-181d-5p mimic or inhibitor. Potential target genes for miR-181d-5p were identified by screening miRNA databases. The interaction between miR-181d-5p and Luman/CREB3 Recruitment Factor (CREBRF) was determined through a luciferase assay. Moreover, the effect of CREBRF on BeWo cell fusion was examined under hypoxic conditions. RESULTS: Aberrant up-regulation of miR-181d-5p and altered expression of trophoblast fusion makers, including glial cell missing 1 (GCM1), Syncytin1 (Syn1), and E-cadherin (ECAD), were found in human FGR placentas. A down-regulation of miR-181d-5p expression was observed in the FSK-induced BeWo cell fusion model. Transfection of the miR-181d-5p mimic resulted in the inhibition of BeWo cell fusion, characterized by a down-regulation of GCM1 and Syn1, accompanied by an up-regulation of ECAD. Conversely, the miR-181d-5p inhibitor promoted BeWo cell fusion. Furthermore, miR-181d-5p exhibited negative regulation of CREBRF, which was significantly down-regulated in the hypoxia-induced BeWo cell model. The overexpression of CREBRF was effectively ameliorated the impaired BeWo cell fusion induced by hypoxia. CONCLUSIONS: Our study demonstrated that miR-181d-5p, which is elevated in FGR placenta, inhibited the BeWo cell fusion through negatively regulating the expression of CREBRF.


Assuntos
MicroRNAs , Placenta , Humanos , Feminino , Gravidez , Placenta/metabolismo , Trofoblastos/metabolismo , Retardo do Crescimento Fetal/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Hipóxia/genética , Hipóxia/metabolismo , Proliferação de Células/genética
12.
BMC Surg ; 23(1): 298, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37789365

RESUMO

BACKGROUND: The evidence of breast-conserving therapy (BCT) applied in centrally located breast cancer (CLBC) is absent. This study aims to investigate the long-term survival of breast-conserving therapy (BCT) in centrally located breast cancer (CLBC) compared with mastectomy in CLBC and BCT in non-CLBC. METHODS: Two hundred ten thousand four hundred nine women with unilateral T1-2 breast cancer undergoing BCT or mastectomy were identified from the Surveillance, Epidemiology, and End Results database. Kaplan-Meier survival curves were assessed via log-rank test. Propensity score matching (PSM) was used to balance baseline features, and the multivariable Cox model was used to estimate the adjusted hazard ratio [HR] and its 95% confidence interval [CI] for breast cancer-specific survival (BCSS) and overall survival (OS). RESULTS: With a median follow-up of 91 months, the BCSS and OS rates in patients who received BCT were greater than those patients treated with mastectomy in the entire CLBC set. Multivariable Cox analyses showed that CLBC patients who received BCT had better BCSS (HR = 0.67, 95%CI: 0.55-0.80, p < 0.001) and OS (HR = 0.78, 95%CI: 0.68-0.90, p = 0.001) than patients who received a mastectomy, but there were no significant differences of BCSS (HR = 0.65, 95%CI: 0.47-0.90, p = 0.009) and OS (HR = 0.82, 95%CI: 0.65-1.04, p = 0.110) after PSM. In patients treated with BCT, CLBC patients had a similar BCSS (HR = 0.99, 95%CI: 0.87-1.12, p = 0.850) but a worse OS (HR = 1.09, 95%CI: 1.01-1.18, p = 0.040) compared to that of the non-CLBC patient, but there was no significant difference both BCSS (HR = 1.05, 95%CI: 0.88-1.24, p = 0.614) and OS (HR = 1.08, 95%CI: 0.97-1.20, p = 0.168) after PSM. CONCLUSION: Our findings revealed that BCT should be an acceptable and preferable alternative to mastectomy for well-selected patients with CLBC.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/cirurgia , Mastectomia Segmentar/métodos , Mastectomia/métodos , Estudos Retrospectivos , Modelos de Riscos Proporcionais
13.
Molecules ; 28(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36838828

RESUMO

Developing fire-retardant building materials is vital in reducing fire loss. The design and preparation of novel fire-retardant coatings merely require the adhesion of flame retardants with high fire-retardant characteristics on the surface, which is significantly more economical than adding excessive amounts of flame retardants into bulk building materials. Meanwhile, fire-retardant coating has excellent performance because it can block the self-sustaining mechanisms of heat and mass transfer over combustion interfaces. In recent years, research of fire-retardant coatings for building materials has been subject to rapid development, and a variety of novel environmentally benign fire-retardant coatings have been reported. Nonetheless, as the surface characteristics of various flammable building materials are contrastively different, selecting chemical ingredients and controlling the physical morphology of fire-retardant coatings for specific building materials is rather complicated. Thus, it is urgent to review the ideas and preparation methods for new fire-retardant coatings. This paper summarizes the latest research progress of fire-retardant building materials, focusing on the compositions and performances of fire-retardant coatings, as well as the principles of their bottom-up design and preparation methods on the surface of building materials.


Assuntos
Incêndios , Retardadores de Chama , Temperatura Alta , Materiais de Construção
14.
Molecules ; 28(17)2023 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-37687242

RESUMO

Ginsenoside Rg3, Rk1, and Rg5, rare ginsenosides from Panax ginseng, have many pharmacological effects, which have attracted extensive attention. They can be obtained through the heat treatment of Gynostemma pentaphyllum. In this study, scanning electron microscopy (SEM) and thermal gravity-differential thermal gravity (TG-DTG) were employed to investigate this process and the content change in ginsenosides was analyzed using liquid chromatography-mass spectrometry (LC-MS). SEM and TG-DTG were used to compare the changes in the ginsenosides before and after treatment. In SEM, the presence of hydrogen bond rearrangement was indicated by the observed deformation of vascular bundles and ducts. The before-and-after changes in the peak patterns and peaks values in TG-DTG indicated that the content of different kinds of compounds produced changes, which all revealed that the formation of new saponins before and after the heat treatment was due to the breakage or rearrangement of chemical bonds. Additionally, the deformation of vascular bundles and vessels indicated the presence of hydrogen bond rearrangement. The glycosidic bond at the 20 positions could be cleaved by ginsenoside Rb3 to form ginsenoside Rd, which, in turn, gave rise to ginsenoside Rg3(S) and Rg3(R). They were further dehydrated to form ginsenoside Rk1 and Rg5. This transformation process occurs in a weak acidic environment provided by G. pentaphyllum itself, without the involvement of endogenous enzymes. In addition, the LC-MS analysis results showed that the content of ginsenoside Rb3 decreased from 2.25 mg/g to 1.80 mg/g, while the contents of ginsenoside Rk1 and Rg5 increased from 0.08 and 0.01 mg/g to 3.36 and 3.35 mg/g, respectively. Ginsenoside Rg3(S) and Rg3(R) were almost not detected in G. pentaphyllum, and the contents of them increased to 0.035 and 0.23 mg/g after heat treatment. Therefore, the rare ginsenosides Rg3(S), Rg3(R), Rk1, and Rg5 can be obtained from G. pentaphyllum via heat treatment.


Assuntos
Ginsenosídeos , Gynostemma , Temperatura Alta
15.
Mol Hum Reprod ; 28(5)2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35536241

RESUMO

Human cytotrophoblast (CTB) differentiation into syncytiotrophoblast (STB) is essential for placental formation and function. Understanding the molecular mechanisms involved in trophoblast differentiation is necessary as it would help in the development of novel therapeutic agents to treat placentation-mediated pregnancy complications. In this study, we found a common upregulated gene, ADAM-like Decysin-1 (ADAMDEC1), from five published microarray and RNA-sequencing datasets. Interference to ADAMDEC1 impaired forskolin-induced BeWo cells differentiation, while ADAMDEC1 overexpression promoted BeWo cells and 3D JEG-3 spheroids differentiation. Interestingly, ADAMDEC1 may inhibit Thrombospondin 1 rather than E-cadherin to trigger the activation of the cAMP signal pathway during CTB differentiation into STB. More importantly, a decreasing in ADAMDEC1 might be involved in the development of preeclampsia. Therefore, ADAMDEC1 is expected to become a new target for prediction of and intervention in placenta-derived pregnancy diseases.


Assuntos
Pré-Eclâmpsia , Trofoblastos , Diferenciação Celular/genética , Linhagem Celular Tumoral , Feminino , Humanos , Placenta , Placentação/genética , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/metabolismo , Gravidez , Trofoblastos/metabolismo
16.
Reproduction ; 163(5): 309-321, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35275842

RESUMO

Decidualization of uterine stromal cells plays an important role in the establishment of normal pregnancy. Previous studies have demonstrated that Acyl-CoA binding protein (Acbp) is critical to cellular proliferation, differentiation, mitochondrial functions, and autophagy. The characterization and physiological function of Acbp during decidualization remain largely unknown. In the present study, we conducted the expression profile of Acbp in the endometrium of early pregnant mice. With the occurrence of decidualization, the expression of Acbp gradually increased. Similarly, Acbp expression was also strongly expressed in decidualized cells following artificial decidualization, both in vivo and in vitro. We applied the mice pseudopregnancy model to reveal that the expression of Acbp in the endometrium of early pregnant mice was not induced by embryonic signaling. Moreover, P4 significantly upregulated the expression of Acbp, whereas E2 appeared to have no regulating effect on Acbp expression in uterine stromal cells. Concurrently, we found that interfering with Acbp attenuated decidualization, and that might due to mitochondrial dysfunctions and the inhibition of fatty acid oxidation. The level of autophagy was increased after knocking down Acbp. During induced decidualization, the expression of ACBP was decreased with the treatment of rapamycin (an autophagy inducer), while increased with the addition of Chloroquine (an autophagy inhibitor). Our work suggests that Acbp plays an essential role in the proliferation and differentiation of stromal cells during decidualization through regulating mitochondrial functions, fatty acid oxidation, and autophagy.


Assuntos
Decídua , Inibidor da Ligação a Diazepam , Animais , Decídua/metabolismo , Inibidor da Ligação a Diazepam/metabolismo , Endométrio/metabolismo , Feminino , Camundongos , Gravidez , Pseudogravidez , Células Estromais/metabolismo
17.
Acta Pharmacol Sin ; 43(5): 1217-1230, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34385606

RESUMO

The phenotypic transformation of microglia in the ischemic penumbra determines the outcomes of ischemic stroke. Our previous study has shown that chemokine-like-factor 1 (CKLF1) promotes M1-type polarization of microglia. In this study, we investigated the cellular source and transcriptional regulation of CKLF1, as well as the biological function of CKLF1 in ischemic penumbra of rat brain. We showed that CKLF1 was significantly up-regulated in cultured rat cortical neurons subjected to oxygen-glucose deprivation/reoxygenation (ODG/R) injury, but not in cultured rat microglia, astrocytes and oligodendrocytes. In a rat model of middle cerebral artery occlusion, we found that CKLF1 was up-regulated and co-localized with neurons in ischemic penumbra. Furthermore, the up-regulated CKLF1 was accompanied by the enhanced nuclear accumulation of NF-κB. The transcriptional activity of CKLF1 was improved by overexpression of NF-κB in HEK293T cells, whereas application of NF-κB inhibitor Bay 11-7082 (1 µM) abolished it, caused by OGD/R. By using chromatin-immunoprecipitation (ChIP) assay we demonstrated that NF-κB directly bound to the promoter of CKLF1 (at a binding site located at -249 bp to -239 bp of CKLF1 promoter region), and regulated the transcription of human CKLF1. Moreover, neuronal conditional medium collected after OGD/R injury or CKLF1-C27 (a peptide obtained from secreted CKLF1) induced the M1-type polarization of microglia, whereas the CKLF1-neutralizing antibody (αCKLF1) or NF-κB inhibitor Bay 11-7082 abolished the M1-type polarization of microglia. Specific knockout of neuronal CKLF1 in ischemic penumbra attenuated neuronal impairments and M1-type polarization of microglia caused by ischemic/reperfusion injury, evidenced by inhibited levels of M1 marker CD16/32 and increased expression of M2 marker CD206. Application of CKLF1-C27 (200 nM) promoted the phosphorylation of p38 and JNK in microglia, whereas specific depletion of neuronal CKLF1 in ischemic penumbra abolished ischemic/reperfusion-induced p38 and JNK phosphorylation. In summary, CKLF1 up-regulation in neurons regulated by NF-κB is one of the crucial mechanisms to promote M1-type polarization of microglia in ischemic penumbra.


Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral , Animais , Encéfalo/metabolismo , Isquemia Encefálica/metabolismo , Quimiocinas/metabolismo , Células HEK293 , Humanos , Proteínas com Domínio MARVEL , Microglia/metabolismo , NF-kappa B/metabolismo , Neurônios/metabolismo , Ratos , Acidente Vascular Cerebral/metabolismo , Regulação para Cima
18.
Int J Mol Sci ; 23(3)2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35163707

RESUMO

Tyrosine kinase inhibitor (TKI) therapy has greatly improved lung cancer survival in patients with epidermal growth factor receptor (EGFR) mutations. However, the development of TKI-acquired resistance is the major problem to be overcome. In this study, we found that miR-196a expression was greatly induced in gefitinib-resistant lung cancer cells. To understand the role and mechanism of miR-196a in TKI resistance, we found that miR-196a-forced expression alone increased cell resistance to gefitinib treatment in vitro and in vivo by inducing cell proliferation and inhibiting cell apoptosis. We identified the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) bound to the promoter region of miR-196a and induced miR-196a expression at the transcriptional level. NRF2-forced expression also significantly increased expression levels of miR-196a, and was an upstream inducer of miR-196a to mediate gefitinib resistance. We also found that glycolipid transfer protein (GLTP) was a functional direct target of miR-196a, and downregulation of GLTP by miR-196a was responsible for gefitinib resistance. GLTP overexpression alone was sufficient to increase the sensitivity of lung cancer cells to gefitinib treatment. Our studies identified a new role and mechanism of NRF2/miR-196a/GLTP pathway in TKI resistance and lung tumor development, which may be used as a new biomarker (s) for TKI resistance or as a new therapeutic target in the future.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proteínas de Transporte/genética , Resistencia a Medicamentos Antineoplásicos , Gefitinibe/farmacologia , MicroRNAs/genética , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/fisiopatologia , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Gefitinibe/uso terapêutico , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Nus , MicroRNAs/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
19.
J Environ Manage ; 320: 115686, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35926388

RESUMO

Sedimentation affects the normal function of reservoirs and is a decisive factor in the reservoir's service life. Flushing sediment during reservoir operation is an effective non-engineering measure to alleviate reservoir sedimentation; however, lowering water level to discharge more flow conflicts with hydropower generation. In this study, reservoir management software is developed to simultaneously optimise sediment discharge and hydropower generation with the reservoir discharge as the decision variables. The sediment transport rate is calculated by an integral of the vertical distribution of suspended load concentration and flow velocity instead of empirical formulas. The model is solved by the most widely used multi-objective optimisation algorithm NSGA-II, resulting in the optimal schedule corresponding to the maximal sediment discharge and hydropower generation, which can be displayed graphically in the software. The software was developed in MATLAB with a Graphical User Interface (GUI) and applied to a large reservoir and can be generalised to other reservoirs. The results show that within the recommended discharge variation of 5%, the sediment release can be increased by 2.07 × 106 t as a reduction of per 1010 kW h in annual power generation. Compared with the original scheme, sediment release can be increased most by 3.31% at the cost of 0.03% loss of power generation. Moreover, the dual objective in the flood season was optimised by 7.30% and 3.92%, respectively.


Assuntos
Sedimentos Geológicos , Rios , Inundações
20.
Yi Chuan ; 44(2): 168-177, 2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-35210217

RESUMO

Long non-coding RNAs (lncRNAs), which belong to the non-protein-coding RNAs, are greater than 200 nt in length. Although they have been found to play crucial roles in the regulation of cell growth and development, cell metabolism and the development of diseases, they are rarely reported in decidualization. The objective of our study is to explore the expression of lincRNA AC027700.1 in the endometrium of early pregnant mice and its role in decidualization. The expression of AC027700.1 in uterine tissues at implantation sites and inter implantation sites on the 6th day of pregnancy were detected by qRT-PCR. The relative expression of AC027700.1 in an in vivo model of induced decidualization in pseudopregnant mice and in in vitro model of induced decidualization in primary stromal cells and nucleus/cytoplasmic fractions were detected by qRT-PCR. GO and KEGG analysis of downstream target genes were performed by GOseq and KOBAS, respectively. The results show that AC027700.1 expression is significantly increased in tissues at implantation sites on the 6th day of pregnancy and in decidualized endometrial tissues and stromal cells. Furthermore, AC027700.1 localizes in the nuclear fraction and the downstream targeted genes are mainly involved in autophagy, cell cycle and RNA transport pathways. This study revealed that lincRNA AC027700.1 may be involved in decidualization of endometrium in early pregnancy, but the specific role and regulatory mechanism remain to be further studied.


Assuntos
Decídua , RNA Longo não Codificante , Animais , Autofagia , Decídua/metabolismo , Implantação do Embrião , Endométrio/metabolismo , Feminino , Camundongos , Gravidez , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Células Estromais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA