Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Appl Opt ; 62(3): 720-724, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36821277

RESUMO

Three units consisting of five, nine, and one square patches are used to construct a phase gradient metasurface with a 2π phase distribution within 18.0-28.0 GHz. The three units arranged in one-dimensional (1D) and two-dimensional (2D) directions can precisely control the reflection beam direction in the plane of phase gradient. Rotating 1D and 2D phase gradient directions can convert a single reflected wave into multi-angle low-energy beams, forming the radar cross section (RCS) reduction metasurface. Using 16×16 periodic units, a 10 dB RCS reduction in 18.0-25.5 GHz is achieved.

2.
Small ; 18(47): e2203431, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36180405

RESUMO

Mesenchymal stem cell (MSC) therapy via intravenous transplantation exhibits great potential for brain tissue regeneration, but still faces thorny clinical translation challenges as the unknown dynamic fate leads to the contentious therapeutic mechanism and the poor MSC viability in harsh lesions limits therapeutic efficiency. Here, a vitality-enhanced dual-modal tracking system is designed to improve engraftment efficiency and is utilized to noninvasively explore the fate of intravenous transplanted human umbilical cord-derived MSCs during long-term treatment of ischemic stroke. Such a system is obtained by bioorthogonally conjugating magnetic resonance imaging (MRI) contrast and near-infrared fluorescence (NIRF) imaging nanoparticles to metabolic glycoengineered MSCs with a lipoic acid-containing extracellular antioxidative protective layer. The dynamic fates of MSCs in multi-dimensional space-time evolution are digitally detailed for up to 28 days using MRI and NIRF imaging equipment, and the protective layer greatly shields MSCs from reactive oxygen spices (ROS) degradation, enhances MSC survival, and engraftment efficiency. Additionally, it is observed that the bioengineered MSCs exhibit dynamic intelligent responses corresponding to microenvironment remodeling and exert enhanced therapeutic effects. This dual-modal tracking system enables long-term tracking of MSCs while improving their viability at the lesion sites, which may serve as a valuable tool for expediting the clinical translation of MSC therapy.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Acidente Vascular Cerebral , Humanos , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Cordão Umbilical , Imageamento por Ressonância Magnética/métodos , Meios de Contraste/metabolismo , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/terapia
3.
Front Cell Neurosci ; 17: 1094808, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36761354

RESUMO

Stress can affect people's judgment and make them take risky decisions. Abnormal decision-making behavior is a core symptom of psychiatric disorders, such as anxiety, depression, and substance abuse. However, the neuronal mechanisms underlying such impairments are largely unknown. The anterior insular cortex (AIC) is a crucial structure to integrate sensory information with emotional and motivational states. These properties suggest that AIC can influence a subjective prediction in decision-making. In this study, we demonstrated that stressed mice prefer to take more risky choices than control mice using a gambling test. Manipulating the neural activity of AIC or selectively inhibiting the AIC-BLA pathway with chemogenetic intervention resulted in alterations in risk decision-making in mice. Different sexes may have different decision-making strategies in risky situations. Endogenous estrogen levels affect emotional cognition by modulating the stress system function in women. We observed decision-making behavior in mice of different sexes with or without stress experience. The result showed that female mice did not change their choice strategy with increasing risk/reward probability and performed a lower risk preference than male mice after stress. Using the pharmacological method, we bilaterally injected an estrogen receptor (ER) antagonist that resulted in more risky behavior and decreased synaptic plasticity in the AIC of female mice. Our study suggested that the AIC is a crucial region involved in stress-induced alteration of decision-making, and estrogen in the AIC may regulate decision-making behavior by regulating synaptic plasticity.

4.
ACS Appl Mater Interfaces ; 14(24): 27743-27761, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35695238

RESUMO

High level of detrimental factors including reactive oxygen species (ROS) and inflammatory cytokines accumulated in the infarct core and their erosion to salvageable penumbra are key pathological cascades of ischemia-reperfusion injury in stroke. Few neuroprotectants can remodel the hostile microenvironment of the infarct core for the failure to interfere with dead or biofunctionally inactive dying cells. Even ischemia-reperfusion injury is temporarily attenuated in the penumbra by medications; insults of detrimental factors from the core still erode the penumbra continuously along with drug metabolism and clearance. Herein, a strategy named "nanobuffer" is proposed to neutralize detrimental factors and buffer destructive erosion to the penumbra. Inspired by neutrophils' tropism to the infarct core and affinity to inflammatory cytokines, poly(lactic-co-glycolic acid) (PLGA) nanoparticles are coated with neutrophil membrane to target the infarct core and absorb inflammatory cytokines; α-lipoic acid is decorated on the surface and cannabidiol is loaded for ROS scavenging and neuroprotection, respectively, to construct the basic unit of the nanobuffer. Such a nanobuffer exerts a comprehensive effect on the infarct area via detrimental factor neutralization and cannabidiol-induced neuroprotection. Besides, the nanobuffer can possibly be enhanced by dynamic ROP (ring-opening-polymerization)-induced membrane cross-fusion among closely adjacent units in vivo. Systematic evaluations show significant decrease of detrimental factors in the core and the penumbra, reduced infarct volume, and improved neurological recovery compared to the untreated group of stroke rats.


Assuntos
Isquemia Encefálica , Canabidiol , AVC Isquêmico , Traumatismo por Reperfusão , Acidente Vascular Cerebral , Animais , Biomimética , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Canabidiol/uso terapêutico , Citocinas , Infarto , Neurônios/metabolismo , Neutrófilos/metabolismo , Ratos , Espécies Reativas de Oxigênio , Acidente Vascular Cerebral/tratamento farmacológico
5.
Nat Commun ; 12(1): 3187, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34045459

RESUMO

Failure of conventional clinical therapies such as tumor resection and chemotherapy are mainly due to the ineffective control of tumor metastasis. Metastasis consists of three steps: (i) tumor cells extravasate from the primary sites into the circulation system via epithelial-mesenchymal transition (EMT), (ii) the circulating tumor cells (CTCs) form "micro-thrombi" with platelets to evade the immune surveillance in circulation, and (iii) the CTCs colonize in the pre-metastatic niche. Here, we design a systemic metastasis-targeted nanotherapeutic (H@CaPP) composed of an anti-inflammatory agent, piceatannol, and an anti-thrombotic agent, low molecular weight heparin, to hinder the multiple steps of tumor metastasis. H@CaPP is found efficiently impeded EMT, inhibited the formation of "micro-thrombi", and prevented the development of pre-metastatic niche. When combined with surgical resection or chemotherapy, H@CaPP efficiently inhibits tumor metastasis and prolonged overall survival of tumor-bearing mice. Collectively, we provide a simple and effective systemic metastasis-targeted nanotherapeutic for combating tumor metastasis.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Portadores de Fármacos/química , Neoplasias Mamárias Experimentais/terapia , Metástase Neoplásica/terapia , Nanomedicina Teranóstica/métodos , Animais , Anti-Inflamatórios/administração & dosagem , Anticoagulantes/administração & dosagem , Linhagem Celular Tumoral/transplante , Quimioterapia Adjuvante/métodos , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Heparina de Baixo Peso Molecular/administração & dosagem , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Glândulas Mamárias Animais/patologia , Glândulas Mamárias Animais/cirurgia , Neoplasias Mamárias Experimentais/patologia , Camundongos , Nanopartículas/química , Células Neoplásicas Circulantes/efeitos dos fármacos , Paclitaxel/administração & dosagem , Estudo de Prova de Conceito , Ratos , Estilbenos/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA