Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Breed ; 44(4): 25, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38516203

RESUMO

Maize rough dwarf disease (MRDD) caused by pathogenic viruses in the genus Fijivirus in the family Reoviridae is one of the most destructive diseases in maize. The pyramiding of effective resistance genes into maize varieties is a potential approach to reduce the damage resulting from the disease. Two major quantitative trait loci (QTLs) (qMrdd2 and qMrdd8) have been previously identified. The resistance genes ZmGLK36 and ZmGDIα-hel have also been cloned with the functional markers Indel-26 and IDP25K, respectively. In this study, ZmGLK36 and ZmGDIα-hel were introgressed to improve MRDD resistance of maize lines (Zheng58, Chang7-2, B73, Mo17, and their derived hybrids Zhengdan958 and B73 × Mo17) via marker-assisted selection (MAS). The converted lines and their derived hybrids, carrying one or two genes, were evaluated for MRDD resistance using artificial inoculation methods. The double-gene pyramiding lines and their derived hybrids exhibited increased resistance to MRDD compared to the monogenic lines and the respective hybrids. The genetic backgrounds of the converted lines were highly similar (90.85-98.58%) to the recurrent parents. In addition, agronomic trait evaluation demonstrated that pyramiding lines with one or two genes and their derived hybrids were not significantly different from the recurrent parents and their hybrids under nonpathogenic stress, including period traits (tasseling, pollen shedding, and silking), yield traits (ear length, grain weight per ear and 100-kernel weight) and quality traits (protein and starch content). There were differences in plant architecture traits between the improved lines and their hybrids. This study illustrated the successful development of gene pyramiding for improving MRDD resistance by advancing the breeding process. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01466-9.

2.
Tissue Eng Regen Med ; 21(3): 421-435, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37995084

RESUMO

BACKGROUND: Insufficient angiogenesis and the lack of skin appendages are critical challenges in cutaneous wound healing. Stem cell-fabricated cell sheets have become a promising strategy, but cell sheets constructed by a single cell type are inadequate to provide a comprehensive proregenerative microenvironment for wound tissue. METHODS: Based on the communication between cells, in this study, bone marrow mesenchymal stem cells (BMSCs) and hair follicle stem cells (HFSCs) were cocultured to fabricate a composite cell sheet (H/M-CS) for the treatment of full-thickness skin wounds in mice. RESULTS: Experiments confirmed that there is cell-cell communication between BMSCs and HFSCs, which enhances the cell proliferation and migration abilities of both cell types. Cell-cell talk also upregulates the gene expression of pro-angiogenic-related cytokines in BMSCs and pro-hair follicle-related cytokines in HFSCs, as well as causing changes in the properties of secreted extracellular matrix components. CONCLUSIONS: Therefore, the composite cell sheet is more conducive for cutaneous wound healing and promoting the regeneration of blood vessels and hair follicles.


Assuntos
Folículo Piloso , Células-Tronco Mesenquimais , Camundongos , Animais , Cicatrização , Pele , Citocinas
3.
ACS Appl Mater Interfaces ; 15(2): 2617-2629, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36596222

RESUMO

The fibrillization and deposition of the human islet amyloid polypeptide (hIAPP) are the pathological hallmark of type 2 diabetes mellitus (T2DM), and these insoluble fibrotic depositions of hIAPP are considered to strongly affect insulin secretion by inducing toxicity toward pancreatic islet ß-cells. The current strategy of preventing amyloid aggregation by nanoparticle-assisted inhibitors can only disassemble fibrotic amyloids into more toxic oligomers and/or protofibrils. Herein, for the first time, we propose a type of cysteine-derived chiral carbon quantum dot (CQD) that targets plasmin, a core natural fibrinolytic protease in humans. These CQDs can serve as fibrinolytic activity regulators for plasmin to cleave hIAPP into nontoxic polypeptides or into even smaller amino acid fragments, thus alleviating hIAPP's fibrotic amyloid-induced cytotoxicity. Our experiments indicate that chiral CQDs have opposing effects on plasmin activity. The l-CQDs promote the cleavage of hIAPP by enhancing plasmin activity at a promotion ratio of 23.2%, thus protecting ß-cells from amyloid-induced toxicity. In contrast, the resultant d-CQDs significantly inhibit proteolysis, decreasing plasmin activity by 31.5% under the same reaction conditions. Second harmonic generation (SHG) microscopic imaging is initially used to dynamically characterize hIAPP before and after proteolysis. The l-CQD promotion of plasmin activity thus provides a promising avenue for the hIAPP-targeted treatment of T2DM to treat low fibrinolytic activity, while the d-CQDs, as inhibitors of plasmin activity, may improve patient survival for hyperfibrinolytic conditions, such as those existing during surgeries and traumas.


Assuntos
Diabetes Mellitus Tipo 2 , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Pontos Quânticos , Humanos , Amiloide/química , Carbono , Cisteína , Diabetes Mellitus Tipo 2/tratamento farmacológico , Fibrinolisina/química , Fibrinolisina/efeitos dos fármacos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/efeitos dos fármacos , Pontos Quânticos/química , Pontos Quânticos/uso terapêutico
4.
Nat Plants ; 9(10): 1720-1733, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37709955

RESUMO

Maize rough dwarf disease (MRDD), caused by maize rough dwarf virus (MRDV) or rice black-streaked dwarf virus (RBSDV), seriously threatens worldwide production of all major cereal crops, including maize, rice, wheat and barley. Here we report fine mapping and cloning of a previously reported major quantitative trait locus (QTL) (qMrdd2) for RBSDV resistance in maize. Subsequently, we show that qMrdd2 encodes a G2-like transcription factor named ZmGLK36 that promotes resistance to RBSDV by enhancing jasmonic acid (JA) biosynthesis and JA-mediated defence response. We identify a 26-bp indel located in the 5' UTR of ZmGLK36 that contributes to differential expression and resistance to RBSDV in maize inbred lines. Moreover, we show that ZmDBF2, an AP2/EREBP family transcription factor, directly binds to the 26-bp indel and represses ZmGLK36 expression. We further demonstrate that ZmGLK36 plays a conserved role in conferring resistance to RBSDV in rice and wheat using transgenic or marker-assisted breeding approaches. Our results provide insights into the molecular mechanisms of RBSDV resistance and effective strategies to breed RBSDV-resistant cereal crops.


Assuntos
Oryza , Vírus de Plantas , Grão Comestível/genética , Fatores de Transcrição/genética , Zea mays/genética , Melhoramento Vegetal , Locos de Características Quantitativas , Doenças das Plantas/genética , Oryza/genética , Vírus de Plantas/genética
5.
Materials (Basel) ; 14(8)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924339

RESUMO

Nanozymes are emerging as a promising strategy for the treatment of tumors. Herein, to cope with the tumor microenvironment (TME), weak acidity (pH 5.6 to 6.8) and trace amounts of overexpressed hydrogen peroxide (H2O2) (100 µM-1 mM), we report nitrogen-doped graphene nanomaterials (N-GNMs), which act as highly efficient catalytic peroxidase (POD)-mimicking nanozymes in the TME for tumor-specific treatment. N-GNMs exhibit POD catalytic properties triggered by a weakly acidic TME and convert H2O2 into highly toxic hydroxyl radicals (•OH) thus causing the death of tumor cells while in the neutral pH surroundings of normal tissues, such catalysis is restrained and leaves normal cells undamaged thereby achieving a tumor-specific treatment. N-GNMs also display a high catalytic activity and can respond to the trace endogenous H2O2 in the TME resulting in a high efficiency of tumor therapy. Our in vitro chemical and cell experiments illustrated the POD-like activity of N-GNMs and in vivo tumor model experiments confirmed the significant inhibitory effect of N-GNMs on tumor growth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA