Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 192(4): 3134-3151, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37165714

RESUMO

Gummosis is 1 of the most common and destructive diseases threatening global peach (Prunus persica) production. Our previous studies have revealed that ethylene and methyl jasmonate enhance peach susceptibility to Lasiodiplodia theobromae, a virulent pathogen inducing gummosis; however, the underlying molecular mechanisms remain obscure. Here, 2 ethylene response factors (ERFs), PpERF98 and PpERF1, were identified as negative regulators in peach response to L. theobromae infection. Expression of 2 putative paralogs, PpERF98-1/2, was dramatically induced by ethylene and L. theobromae treatments and accumulated highly in the gummosis-sensitive cultivar. Silencing of PpERF98-1/2 increased salicylic acid (SA) content and pathogenesis-related genes PpPR1 and PpPR2 transcripts, conferring peach resistance to L. theobromae, whereas peach and tomato (Solanum lycopersicum) plants overexpressing either of PpERF98-1/2 showed opposite changes. Also, jasmonic acid markedly accumulated in PpERF98-1/2-silenced plants, but reduction in PpPR3, PpPR4, and PpCHI (Chitinase) transcripts indicated a blocked signaling pathway. PpERF98-1 and 2 were further demonstrated to directly bind the promoters of 2 putative paralogous PpERF1 genes and to activate the ERF branch of the jasmonate/ethylene signaling pathway, thus attenuating SA-dependent defenses. The lesion phenotypes of peach seedlings overexpressing PpERF1-1/2 and PpERF98-1/2 were similar. Furthermore, PpERF98-1/2 formed homodimers/heterodimers and interacted with the 2 PpERF1 proteins to amplify the jasmonate/ethylene signaling pathway, as larger lesions were observed in peach plants cooverexpressing PpERF98 with PpERF1 relative to individual PpERF98 overexpression. Overall, our work deciphers an important regulatory network of ethylene-mediated peach susceptibility to L. theobromae based on a PpERF98-PpERF1 transcriptional cascade, which could be utilized as a potential target for genetic engineering to augment protection against L. theobromae-mediated diseases in crops and trees.


Assuntos
Prunus persica , Prunus persica/genética , Prunus persica/metabolismo , Etilenos/metabolismo , Plantas
2.
Plant Dis ; 107(7): 2205-2208, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36947835

RESUMO

Botryosphaeria dothidea is a worldwide pathogenic fungus that causes stem canker, leaf dieback, and fruit rot on a large number of crops and trees. Gummosis caused by B. dothidea is one of the most prevalent and devastating diseases on peach in southern China. This study reported a high-quality and well-annotated genome sequence of B. dothidea strain XNHG241. The findings can be used as a reference for studying fungal biology, pathogenic mechanism of B. dothidea, and the interaction between B. dothidea and host, and eventually facilitate peach gummosis management.


Assuntos
Ascomicetos , Doenças das Plantas , Doenças das Plantas/microbiologia , Ascomicetos/genética , China
3.
BMC Genomics ; 19(1): 846, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30486776

RESUMO

BACKGROUND: The green peach aphid (GPA), Myzus persicae (Sülzer), is a widespread phloem-feeding insect that significantly influences the yield and visual quality of peach [Prunus persica (L.) Batsch]. Single dominant gene (Rm3)-based resistance provides effective management of this invasive pest, although little is known about the molecular responses of plants to GPA feeding. RESULTS: To illustrate the molecular mechanisms of monogenic resistance in peach to young tissue-infecting GPAs, aphid-resistant/aphid-susceptible peach lines from a segregating population with Rm3/rm3 and rm3/rm3 genotypes were infested with GPAs for 3 to 72 h. Transcriptome analysis of the infested tissues identified 3854 differentially expressed genes (DEGs). Although the majority of the DEGs in the resistant line also responded to aphid attack in the susceptible line, the overall magnitude of change was greater in the resistant line than in the susceptible line. The enriched gene ontology of the 3854 DEGs involved in plant defence responses included redox situation, calcium-mediated signalling, transcription factor (e.g., WRKY, MYB, and ERF), MAPK signalling cascade, phytohormone signalling, pathogenesis-related protein, and secondary metabolite terms. Of the 53 genes annotated in a 460 kb interval of the rm3 locus, seven genes were differentially expressed between the aphid-resistant and aphid-susceptible peach lines following aphid infestation. CONCLUSIONS: Together, these results suggest that the Rm3-dependent resistance relies mainly on the inducible expression of defence-related pathways and signalling elements within hours after the initiation of aphid feeding and that the production of specific secondary metabolites from phenylpropanoid/flavonoid pathways can have major effects on peach-aphid interactions.


Assuntos
Afídeos/fisiologia , Resistência à Doença/genética , Loci Gênicos , Doenças das Plantas/imunologia , Doenças das Plantas/parasitologia , Prunus persica/genética , Prunus persica/parasitologia , Transcriptoma/genética , Animais , Cromossomos de Plantas/genética , Análise por Conglomerados , Comportamento Alimentar , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Estudos de Associação Genética , Fenótipo , Doenças das Plantas/genética , Brotos de Planta/genética , Prunus persica/imunologia , Reprodutibilidade dos Testes , Análise de Sequência de RNA
5.
Plant Dis ; 100(2): 345-351, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30694151

RESUMO

Peach gummosis, caused by Lasiodiplodia theobromae, is one of the most prevalent diseases that affects peach production. In this study, we investigated the effect of zinc sulfate on inoculated peach shoots, as well as on the growth, morphology, and pathogenicity of L. theobromae in vitro, in the laboratory. Zinc deficiency was detected in diseased peach shoots by micronutrient analysis (Cu, Mn, and Zn) and confirmed by the measurement of transcript levels of zinc transporters (ZIP4, HAM4, and ZAT). The zinc was transferred from the diseased peach shoots to the peach gum. Applying zinc sulfate to the diseased peach shoots reduced the severity of peach gummosis, showing significantly reduced lesion size and gum weight, as well as downregulation of cell wall degradation-related gene (PG and PME) compared with the control. Zinc sulfate also specifically controlled peach gummosis under L. theobromae phytotoxin stress and induced the expression of defense-related genes (PR4, CHI, PAL, PGIP, and GNS3). In addition, in vitro mycelial growth of L. theobromae was significantly inhibited by zinc sulfate compared with the control. Zinc sulfate caused abnormal hyphae at 25 mM and swelling hyphal tips at 50 mM. Exposure of L. theobromae to zinc sulfate for 20 min inhibited the ability of the pathogen to cause peach gummosis. Our physiological and molecular data demonstrated that zinc sulfate has a dual function by reducing susceptibility in the host and by direct inhibition of the pathogen.

6.
J Exp Bot ; 66(22): 7031-44, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26307136

RESUMO

High concentrations of indole-3-acetic acid (IAA) are required for climacteric ethylene biosynthesis to cause fruit softening in melting flesh peaches at the late ripening stage. By contrast, the fruits of stony hard peach cultivars do not soften and produce little ethylene due to the low IAA concentrations. To investigate the regulation of IAA accumulation during peach ripening [the transition from stage S3 to stage S4 III (climacteric)], a digital gene expression (DGE) analysis was performed. The expression patterns of auxin-homeostasis-related genes were compared in fruits of the melting flesh peach 'Goldhoney 3' and the stony hard flesh peach 'Yumyeong' during the ripening stage. It is revealed here that a YUCCA flavin mono-oxygenase gene (PpYUC11, ppa008176m), a key gene in auxin biosynthesis, displayed an identical differential expression profile to the profiles of IAA accumulation and PpACS1 transcription: the mRNA transcripts increased at the late ripening stage in melting flesh peaches but were below the limit of detection in mature fruits of stony hard peaches. In addition, the strong association between intron TC microsatellite genotypes of PpYUC11 and the flesh texture (normal or stony hard) is described in 43 peach varieties, indicating that this locus may be responsible for the stony hard phenotype in peach. These findings support the hypothesis that PpYUC11 may play an essential role in auxin biosynthesis during peach fruit ripening and is a candidate gene for the control of the stony hard phenotype in peach.


Assuntos
Frutas/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo , Oxigenases/metabolismo , Proteínas de Plantas/metabolismo , Prunus persica/crescimento & desenvolvimento , Prunus persica/genética , Genes de Plantas , Homeostase , Oxigenases/genética , Proteínas de Plantas/genética
7.
Tree Physiol ; 44(9)2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39113606

RESUMO

Manganese (Mn) is indispensable for plant growth, but its excessive uptake in acidic soils leads to toxicity, hampering food safety. Phosphorus (P) application is known to mitigate Mn toxicity, yet the underlying molecular mechanism remains elusive. Here, we conducted physiological and transcriptomic analyses of peach roots response to P supply under Mn toxicity. Manganese treatment disrupted root architecture and caused ultrastructural damage due to oxidative injury. Notably, P application ameliorated the detrimental effects and improved the damaged roots by preventing the shrinkage of cortical cells, epidermis and endodermis, as well as reducing the accumulation of reactive oxygen species (ROS). Transcriptomic analysis revealed the differentially expressed genes enriched in phenylpropanoid biosynthesis, cysteine, methionine and glutathione metabolism under Mn and P treatments. Phosphorus application upregulated the transcripts and activities of core enzymes crucial for lignin biosynthesis, enhancing cell wall integrity. Furthermore, P treatment activated ascorbate-glutathione cycle, augmenting ROS detoxification. Additionally, under Mn toxicity, P application downregulated Mn uptake transporter while enhancing vacuolar sequestration transporter transcripts, reducing Mn uptake and facilitating vacuolar storage. Collectively, P application prevents Mn accumulation in roots by modulating Mn transporters, bolstering lignin biosynthesis and attenuating oxidative stress, thereby improving root growth under Mn toxicity. Our findings provide novel insights into the mechanism of P-mediated alleviation of Mn stress and strategies for managing metal toxicity in peach orchards.


Assuntos
Ácido Ascórbico , Glutationa , Lignina , Manganês , Fósforo , Raízes de Plantas , Prunus persica , Manganês/metabolismo , Manganês/toxicidade , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Ácido Ascórbico/metabolismo , Fósforo/metabolismo , Lignina/metabolismo , Glutationa/metabolismo , Prunus persica/metabolismo , Prunus persica/efeitos dos fármacos , Prunus persica/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos
8.
Tree Physiol ; 43(11): 1933-1949, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37561416

RESUMO

The ß-cyclocitric acid (ß-CCA) is a bioactive apocarotenoid previously shown to improve drought tolerance in annual plants. However, the underlying molecular mechanism of this process remains largely elusive. Moreover, the question about the activity of ß-CCA in perennial fruit crops is still open. Here, we found that treatment of ß-CCA enhances drought tolerance in peach seedlings. The application of ß-CCA significantly increased the relative water content and root activity and reduced the electrolyte leakage of peach seedlings under drought stress. Moreover, treatment with ß-CCA under drought stress increased chlorophyll fluorescence, indicating a positive effect on photosynthesis, while also enhancing superoxide dismutase and peroxidase activity and reducing reactive oxygen species (ROS) levels. Consistent with these alterations, transcriptome analysis revealed an up-regulation of photosynthesis and antioxidant-related genes upon the application of ß-CCA under drought stress. We also detected an induction in genes related to detoxification, environmental adaptation, primary metabolism, phytohormone, phenylpropanoid and the biosynthesis of cutin, suberine and wax, which might contribute to the induction of drought resistance. Altogether, our study reveals that ß-CCA positively modulates peach drought tolerance, which is mainly mediated by enhancing photosynthesis and reducing ROS, indicating the potential of utilizing ß-CCA for drought control in peach and perhaps other fruit crops.


Assuntos
Prunus persica , Prunus persica/metabolismo , Resistência à Seca , Plântula/genética , Plântula/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fotossíntese/fisiologia , Antioxidantes/metabolismo , Secas , Estresse Fisiológico/genética
9.
J Hazard Mater ; 454: 131442, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37121032

RESUMO

The natural resistance-associated macrophage protein (NRAMP) gene family assists in the transport of metal ions in plants. However, the role and underlying physiological mechanism of NRAMP genes under heavy metal toxicity in perennial trees remain to be elucidated. In Prunus persica, five NRAMP family genes were identified and named according to their predicted phylogenetic relationships. The expression profiling analysis indicated that PpNRAMPs were significantly induced by excess manganese (Mn), iron, zinc, and cadmium treatments, suggesting their potential role in heavy metal uptake and transportation. Notably, the expression of PpNRAMP5 was tremendously increased under Mn toxicity stress. Heterologous expression of PpNRAMP5 in yeast cells also confirmed Mn transport. Suppression of PpNRAMP5 through virus-induced gene silencing enhanced Mn tolerance, which was compromised when PpNRAMP5 was overexpressed in peach. The silencing of PpNRAMP5 mitigated Mn toxicity by dramatically reducing Mn contents in roots, and effectively reduced the chlorophyll degradation and improved the photosynthetic apparatus under Mn toxicity stress. Therefore, PpNRAMP5-silenced plants were less damaged by oxidative stress, as signified by lowered H2O2 contents and O2•- staining intensity, also altered the reactive oxygen species (ROS) homeostasis by activating enzymatic antioxidants. Consistently, these physiological changes showed an opposite trend in the PpNRAMP5-overexpressed peach plants. Altogether, our findings suggest that downregulation of PpNRAMP5 markedly reduces the uptake and transportation of Mn, thus activating enzymatic antioxidants to strengthen ROS scavenging capacity and photosynthesis activity, thereby mitigating Mn toxicity in peach plants.


Assuntos
Metais Pesados , Prunus persica , Plântula , Manganês/metabolismo , Prunus persica/genética , Prunus persica/metabolismo , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/metabolismo , Filogenia , Metais Pesados/toxicidade , Metais Pesados/metabolismo , Plantas
10.
Tree Physiol ; 43(7): 1265-1283, 2023 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-36905330

RESUMO

Waterlogging is a major abiotic stress that plants encounter as a result of climate change impacts. Peach is very sensitive to hypoxia during waterlogging, which causes poor tree vigor and huge economic losses. The molecular mechanism underlying the peach response to waterlogging and reoxygenation remains unclear. Here, the physiological and molecular responses of 3-week-old peach seedlings under waterlogged and recovery conditions were comprehensively analyzed. As a result, waterlogging significantly reduced plant height and biomass with inhibition of root growth when compared with control and reoxygenation. Similar results were observed for photosynthetic activities and gaseous exchange parameters. Waterlogging increased lipid peroxidation, hydrogen peroxide, proline, glutamic acid and glutathione contents, while superoxide dismutase, peroxidases and catalase activities were decreased. The glucose and fructose contents were accumulated, contrary to sucrose which was reduced remarkably throughout the stress periods. The level of endogenous indole acetic acid (IAA) was increased in waterlogging but decreased after reoxygenation. However, the change trends of jasmonic acid (JA), cytokinins and abscisic acid (ABA) levels were opposite to IAA. In transcriptomic analysis, there were 13,343 differentially expressed genes (DEGs) with higher and 16,112 genes with lower expression. These DEGs were greatly enriched in carbohydrate metabolism, anaerobic fermentation, glutathione metabolism and IAA hormone biosynthesis under waterlogging, while they were significantly enriched in photosynthesis, reactive oxygen species scavenging, ABA and JA hormones biosynthesis in reoxygenation. Moreover, several genes related to stress response, carbohydrate metabolism and hormones biosynthesis were significantly changed in waterlogging and reoxygenation, which indicated unbalanced amino acid, carbon and fatty acid pools in peach roots. Taken together, these results suggest that glutathione, primary sugars and hormone biosynthesis and signaling might play key roles in plant response to waterlogging. Our work provides a comprehensive understanding of gene regulatory networks and metabolites in waterlogging stress and its recuperation, which will facilitate peach waterlogging control.


Assuntos
Prunus persica , Prunus persica/metabolismo , Transcriptoma , Ácido Abscísico/metabolismo , Plantas/metabolismo , Glutationa , Hormônios
11.
Chemosphere ; 303(Pt 3): 135196, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35659937

RESUMO

Heavy metal/metalloids (HMs) are among the primary soil pollutants that limit crop production worldwide. Plants grown in HM contaminated soils exhibit reduced growth and development, resulting in a decrease in crop production. The exposure to HMs induces plant oxidative stress due to the formation of free radicals, which alter plant morphophysiological and biochemical mechanisms at cellular and tissue levels. When exposed to HM toxicity, plants evolve sophisticated physiological and cellular defense strategies, such as sequestration and transportation of metals, to ensure their survival. Plants also have developed efficient strategies by activating signaling pathways, which induce the expression of HM transporters. Plants either avoid the uptake of HMs from the soil or activate the detoxifying mechanism to tolerate HM stress, which involves the production of antioxidants (enzymatic and non-enzymatic) for the scavenging of reactive oxygen species. The metal-binding proteins including phytochelatins and metallothioneins also participate in metal detoxification. Furthermore, phytohormones and their signaling pathways also help to regulate cellular activities to counteract HM stress. The excessive levels of HMs in the soil can contribute to plant morpho-physiological, biochemical, and molecular alterations, which have a detrimental effect on the quality and productivity of crops. To maintain the commercial value of fruits and vegetables, various measures should be considered to remove HMs from the metal-polluted soils. Bioremediation is a promising approach that involves the use of tolerant microorganisms and plants to manage HMs pollution. The understanding of HM toxicity, signaling pathways, and tolerance mechanisms will facilitate the development of new crop varieties that help in improving phytoremediation.


Assuntos
Metaloides , Metais Pesados , Poluentes do Solo , Biodegradação Ambiental , Metaloides/metabolismo , Metais Pesados/análise , Plantas/metabolismo , Solo , Poluentes do Solo/análise
12.
Chemosphere ; 291(Pt 3): 132999, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34808198

RESUMO

In this study, we evaluated the mitigative role of phosphorus (P) in terms of manganese (Mn) toxicity in peach (Prunus persica L.) plants. Ten-day-old seedlings were treated with excess Mn (1 mM MnSO4) alone and in combination with different P levels (100, 150, 200 and 250 µM KH2PO4) in half-strength Hoagland medium. The results demonstrated that Mn toxicity plants accumulated a significant amount of Mn in their tissues, and the concentration was higher in roots than in leaves. The accumulated Mn led to a considerable reduction in plant biomass, water status, chlorophyll content, photosynthetic rate, and disrupted the chloroplast ultrastructure by increasing oxidative stress (H2O2 and O2•-). However, P supplementation dramatically improved plant biomass, leaf relative water and chlorophyll contents, upregulating the ascorbate-glutathione pool and increasing the activities of antioxidant enzymes (superoxide dismutase; peroxidase dismutase; ascorbate peroxidase; monodehydroascorbate reductase; dehydroascorbate reductase), thus reducing oxidative damage as evidenced by lowering H2O2 and O2•- staining intensity. Moreover, P application markedly restored stomatal aperture and improved chloroplast ultrastructure, as indicated by the improved performance of photosynthetic machinery. Altogether, our findings suggest that P (250 µM) has a great potential to induce tolerance against Mn toxicity by limiting Mn accumulation in tissues, upregulating antioxidant defense mechanisms, alleviating oxidative damage, improving chloroplast ultrastructure and photosynthetic performance in peach plants.


Assuntos
Prunus persica , Antioxidantes/metabolismo , Clorofila , Cloroplastos/metabolismo , Peróxido de Hidrogênio , Manganês/toxicidade , Estresse Oxidativo , Fósforo , Folhas de Planta/metabolismo , Prunus persica/metabolismo , Plântula/metabolismo
13.
Hortic Res ; 92022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35040976

RESUMO

Gummosis, one of the most detrimental diseases to the peach industry worldwide, can be induced by Lasiodiplodia theobromae. Ethylene (ET) is known to trigger the production of gum exudates, but the mechanism underlying fungus-induced gummosis remains unclear. In this study, L. theobromae infection triggered the accumulation of ET and jasmonic acid (JA) but not salicylic acid (SA) in a susceptible peach variety. Gaseous ET and its biosynthetic precursor increased gum formation, whereas ET inhibitors repressed it. SA and methyl-jasmonate treatments did not influence gum formation. RNA-seq analysis indicated that L. theobromae infection and ET treatment induced a shared subset of 1808 differentially expressed genes, which were enriched in the category "starch and sucrose, UDP-sugars metabolism". Metabolic and transcriptional profiling identified a pronounced role of ET in promoting the transformation of primary sugars (sucrose, fructose, and glucose) into UDP-sugars, which are substrates of gum polysaccharide biosynthesis. Furthermore, ethylene insensitive3-like1 (EIL1), a key transcription factor in the ET pathway, could directly target the promoters of the UDP-sugar biosynthetic genes UXS1a, UXE, RGP and MPI and activate their transcription, as revealed by firefly luciferase and yeast one-hybrid assays. On the other hand, the supply of SA and inhibitors of ET and JA decreased the lesion size. ET treatment reduced JA levels and the transcription of the JA biosynthetic gene OPR but increased the SA content and the expression of its biosynthetic gene PAL. Overall, we suggest that endogenous and exogenous ET aggravate gummosis disease by transactivating UDP-sugar metabolic genes through EIL1 and modulating JA and SA biosynthesis in L. theobromae-infected peach shoots. Our findings shed light on the molecular mechanism by which ET regulates plant defense responses in peach during L. theobromae infection.

14.
Biochem Biophys Res Commun ; 413(1): 10-6, 2011 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-21871871

RESUMO

Drought is a major environmental factor that limits plant growth and productivity. Polyamines have been shown to act as stress molecules that accumulate in plant adaptation to abiotic stresses. In this study, an arginine decarboxylase gene isolated from Poncirus trifoliata, PtADC, was introduced into tobacco and tomato to investigate its function in drought tolerance. We demonstrate that the transgenic plants showed an improvement in dehydration and drought tolerance. Under dehydration stress conditions, the accumulation of reactive oxygen species (ROS) was remarkably decreased in the transgenic lines as compared with the wild type. Moreover, the transcript levels of three stress-responsive genes were increased in the transgenic tobacco lines. Taken together, our results suggest that PtADC plays a key role in drought tolerance, which is, at least partially, attributed to its role in ROS detoxification.


Assuntos
Carboxiliases/metabolismo , Secas , Nicotiana/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Solanum lycopersicum/metabolismo , Estresse Fisiológico , Água/metabolismo , Carboxiliases/genética , Solanum lycopersicum/anatomia & histologia , Solanum lycopersicum/genética , Plantas Geneticamente Modificadas/anatomia & histologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Nicotiana/anatomia & histologia , Nicotiana/genética
15.
Plant Dis ; 95(11): 1378-1384, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30731783

RESUMO

Peach (Prunus persica) is one of the most important and widely grown fruit trees in China; however, perennial gummosis on trunks and branches is a major problem in peach orchards of Hubei Province, one of the most important peach production areas of China. In order to identify the gummosis-causing agents, diseased trunks and branches were collected from 11 peach orchards in Hubei Province. Fungal isolates were obtained from these samples, yielding three species: Botryosphaeria dothidea (anamorph Fusicoccum aesculi), B. rhodina (anamorph Lasiodiplodia theobromae), and B. obtusa (anamorph Diplodia seriata). They were identified based on conidial morphology and cultural characteristics, as well as analyses of nucleotide sequences of three genomic regions: the internal transcribed spacer region, a partial sequence of the ß-tubulin gene, and the translation elongation factor 1-α gene. Fusicoccum aesculi was found in all 11 orchards but L. theobromae was found only in Shayang County in the Jingmen region and D. seriata only in Gong'an County in the Jingzhou region. Via artificial inoculation using mycelia on wounded twigs or branches, these three species were all found to be pathogenic, causing dark lesions on the twigs and branches and, sometimes, gum exudation from diseased parts. Isolates of L. theobromae were the most virulent and caused the largest lesions and most copious gummosis, and D. seriata had less gum than the other two species. This report represents the first description of L. theobromae and D. seriata as causal agents of gummosis on peach in China.

16.
Front Plant Sci ; 12: 794881, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975982

RESUMO

Autotoxicity is known as a critical factor in replanting problem that reduces land utilization and creates economic losses. Benzoic acid (BA) is identified as a major autotoxin in peach replant problem, and causes stunted seedling growth or even death. However, the physiological and molecular mechanisms of peach response to BA stress remain elusive. Here, we comprehensively studied the morphophysiological, transcriptional, and metabolic responses of peach plants to BA toxicity. Results showed that BA stress inhibited peach seedlings growth, decreased chlorophyll contents and fluorescence levels, as well as disturbed mineral metabolism. The contents of hydrogen peroxide, superoxide anion, and malondialdehyde, as well as the total antioxidant capacity, were significantly increased under BA stress. A total of 6,319 differentially expressed genes (DEGs) were identified after BA stress, of which the DEGs related to photosynthesis, redox, and ion metabolism were greatly changed; meanwhile, numerous stress-responsive genes (HSPs, GSTs, GR, and ABC transporters) and transcription factors (MYB, AP2/ERF, NAC, bHLH, and WRKY) were noticeably altered under BA stress. BA induced metabolic reprogramming, and 74 differentially accumulated metabolites, including amino acids and derivatives, fatty acids, organic acids, sugars, and sugar alcohols, were identified in BA-stressed roots. Furthermore, an integrated analysis of genes and metabolites indicated that most of the co-mapped KEGG pathways were enriched in amino acid and carbohydrate metabolism, which implied a disturbed carbon and nitrogen metabolism after BA stress. The findings would be insightful in elucidating the mechanisms of plant response to autotoxicity stress, and help guide crops in alleviating replant problem.

17.
Front Microbiol ; 12: 741842, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630367

RESUMO

Lasiodiplodia theobromae is one of the primary causal agents in peach gummosis disease, leading to enormous losses in peach production. In our previous study, a redox-related gene, LtAP1, from the fungus was significantly upregulated in peach shoots throughout infection. Here, we characterized LtAP1, a basic leucine zipper transcription factor, during peach gummosis progression using the CRISPR-Cas9 system and homologous recombination. The results showed that LtAP1-deletion mutant had slower vegetative growth and increased sensitivity to several oxidative and nitrosative stress agents. LtAP1 was highly induced by exogenous oxidants treatment in the L. theobromae wild-type strain. In a pathogenicity test, the deletion mutant showed decreased virulence (reduced size of necrotic lesions, less gum release, and decreased pathogen biomass) on infected peach shoots compared to the wild-type strain. The mutant showed severely reduced transcription levels of genes related to glutaredoxin and thioredoxin in L. theobroame under oxidative stress or during infection, indicating an attenuated capacity for reactive oxygen species (ROS) detoxification. When shoots were treated with an NADPH oxidase inhibitor, the pathogenicity of the mutant was partially restored. Moreover, ROS production and plant defense response were strongly activated in peach shoots infected by the mutant. These results highlight the crucial role of LtAP1 in the oxidative stress response, and further that it acts as an important virulence factor through modulating the fungal ROS-detoxification system and the plant defense response.

18.
Plant Physiol Biochem ; 154: 43-53, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32526610

RESUMO

Peach gummosis caused by Lasiodiplodia theobromae is one of the most detrimental diseases to peaches in southern China. Reactive oxygen species (ROS) play major roles in plant-pathogen interactions, however, their roles in the pathogenesis of peach gummosis, especially shoot disease in perennials, are largely unknown. In this study, the effects of L. theobromae on ROS production-scavenging systems and on signalling transduction during L. theobromae-induced gummosis in current-year peach shoots were investigated. The infection by L. theobromae led to a ROS burst and activated the plant antioxidant enzyme-dependent scavenging system. With disease progression, the capacity of the plant antioxidant machinery declined, and allowed for ROS accumulation and eventual malondialdehyde production. As for the fungus L. theobromae, the transcripts of genes related to ROS production were significantly repressed, and concomitantly the expression of genes related to antioxidant systems and oxidative stress resistance was markedly upregulated, perhaps to alleviate oxidative stress for successful colonisation. Moreover, genes involved in phytohormones biosynthesis and pathogenesis-related proteins were all markedly promoted, which could contribute to the restriction of disease development in peach shoots. Overall, the results showed that the ROS production-scavenging system in P. persica might affect disease development during peach-L. theobromae interaction. Our findings lay the foundations for future in-depth investigations of the molecular mechanisms and regulatory networks underlying L. theobromae-mediated shoot diseases in terms of ROS production-scavenging systems.


Assuntos
Ascomicetos/patogenicidade , Doenças das Plantas/microbiologia , Prunus persica/microbiologia , Espécies Reativas de Oxigênio/metabolismo , Sequestradores de Radicais Livres/metabolismo , Prunus persica/metabolismo
19.
Fungal Biol ; 123(1): 51-58, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30654957

RESUMO

Lasiodiplodia theobromae, a phytopathogenic fungus that causes peach gummosis, is considered one of the major constraints to peach production worldwide. Here, we report the characteristics of toxic metabolites and the proteomics investigation of the secreted proteins of L. theobromae from its in vitro culture. The phytotoxins of L. theobromae from the culture filtrate of Richard's liquid medium showed high toxicity on peach current year shoots with large lesion diameter and high gum weight. The toxicity measurement showed that 23.6 and 21.2 mg gum were induced from peach shoots by solvent fractions of ethyl acetate and dichloromethane, respectively, with significant differences from other organic solvents. A total of 23 proteins were identified by liquid chromatography-mass spectrometry from the in vitro secretome of L. theobromae. Sequence analysis indicated that 14 proteins were extracellular proteins based on signal peptides and localization. The expression profiles of the analyzed fungal genes were significantly upregulated from 1 day postinoculation (dpi) to 2 dpi, indicating that the early stage is an important stage for the infection of L. theobromae. The present study has provided insights into the extracellular phytotoxins and secreted proteins that are possibly associated with pathogenicity of the peach gummosis.


Assuntos
Ascomicetos/isolamento & purificação , Ascomicetos/metabolismo , Proteínas Fúngicas/análise , Micotoxinas/análise , Doenças das Plantas/microbiologia , Prunus persica , Ascomicetos/genética , Cromatografia Líquida , Perfilação da Expressão Gênica , Espectrometria de Massas , Micotoxinas/isolamento & purificação , Micotoxinas/toxicidade , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Proteoma/análise , Análise de Sequência de DNA
20.
Hortic Res ; 6: 19, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30729009

RESUMO

The plant hormone ethylene regulates ripening in climacteric fruits. The phytohormone abscisic acid (ABA) affects ethylene biosynthesis, but whether ethylene influences ABA biosynthesis is unknown. To explore this possibility, we investigated the interactions between the ABA biosynthesis genes PpNCED2/3 and the ethylene response transcription factor PpERF3 in peach fruit. The ABA content increased during fruit maturation and reached a peak at stage S4 III. The increase was greatly inhibited by the ethylene inhibitor 1-MCP, which also suppressed PpERF3 expression. PpERF3 shared a similar expression profile with PpNCED2/3, encoding a rate-limiting enzyme involved in ABA biosynthesis, during fruit ripening. A yeast one-hybrid assay suggested that the nuclear-localized PpERF3 might bind to the promoters of PpNCED2/3. PpERF3 increased the expression of PpNCED2/3 as shown by dual-luciferase reporters, promoter-GUS assays and transient expression analyses in peach fruit. Collectively, these results suggest that ethylene promotes ABA biosynthesis through PpERF3's regulation of the expression of ABA biosynthesis genes PpNCED2/3.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA