Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
World J Diabetes ; 15(3): 502-518, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38591083

RESUMO

BACKGROUND: Jianpi Gushen Huayu Decoction (JPGS) has been used to clinically treat diabetic nephropathy (DN) for many years. However, the protective mechanism of JPGS in treating DN remains unclear. AIM: To evaluate the therapeutic effects and the possible mechanism of JPGS on DN. METHODS: We first evaluated the therapeutic potential of JPGS on a DN mouse model. We then investigated the effect of JPGS on the renal metabolite levels of DN mice using non-targeted metabolomics. Furthermore, we examined the effects of JPGS on c-Jun N-terminal kinase (JNK)/P38-mediated apoptosis and the inflammatory responses mediated by toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB)/NOD-like receptor family pyrin domain containing 3 (NLRP3). RESULTS: The ameliorative effects of JPGS on DN mice included the alleviation of renal injury and the control of inflammation and oxidative stress. Untargeted metabolomic analysis revealed that JPGS altered the metabolites of the kidneys in DN mice. A total of 51 differential metabolites were screened. Pathway analysis results indicated that nine pathways significantly changed between the control and model groups, while six pathways significantly altered between the model and JPGS groups. Pathways related to cysteine and methionine metabolism; alanine, tryptophan metabolism; aspartate and glutamate metabolism; and riboflavin metabolism were identified as the key pathways through which JPGS affects DN. Further experimental validation showed that JPGS treatment reduced the expression of TLR4/NF-κB/NLRP3 pathways and JNK/P38 pathway-mediated apoptosis related factors. CONCLUSION: JPGS could markedly treat mice with streptozotocin (STZ)-induced DN, which is possibly related to the regulation of several metabolic pathways found in kidneys. Furthermore, JPGS could improve kidney inflammatory responses and ameliorate kidney injuries in DN mice via the TLR4/NF-κB/NLRP3 pathway and inhibit JNK/P38 pathway-mediated apoptosis in DN mice.

2.
Artigo em Inglês | MEDLINE | ID: mdl-35845577

RESUMO

Jian-Gan-Xiao-Zhi decoction (JGXZ) has demonstrated beneficial effects on nonalcoholic fatty liver disease (NAFLD). However, the mechanisms by which JGXZ improve NAFLD are still unclear. Methods. In this study, we first used a high-fat diet (HFD) to establish a NAFLD rat model to clarify the therapeutic effect of JGXZ on NAFLD. Secondly, we used network pharmacology to predict the potential targets of JGXZ on NAFLD, and then the key targets obtained from network pharmacology were verified. Finally, we used untargeted metabolomics to study the metabolic regulatory mechanism of JGXZ. Results. JGXZ treatment could decrease body weight and ameliorate dyslipidemia in NAFLD model rats. H&E and oil red O staining indicated that JGXZ reduced steatosis and infiltration of inflammatory cells in the liver. In addition, network pharmacology research found that the potential targets of JGXZ on NAFLD pathway were mainly associated with improving oxidative stress, apoptosis, inflammation, lipid metabolism disorders, and insulin resistance. Further experimental verification confirmed that JGXZ could inhibit inflammation and improve oxidative stress, insulin resistance, and lipid metabolism disorders. Serum untargeted metabolomics analyses indicated that the JGXZ in the treatment of NAFLD may work through the linoleic acid metabolism, alpha-linolenic acid metabolism, tryptophan metabolism, and glycerophospholipid metabolism pathways. Conclusions. In conclusion, this study found that JGXZ has an ameliorative effect on NAFLD, and JGXZ alleviates the inflammatory response and oxidative stress and lipid metabolism disorders in NAFLD rats. The mechanism of action of JGXZ in the treatment of NAFLD may be related to the regulation of linoleic acid metabolism, tryptophan metabolism, alpha-linolenic acid metabolism, and glycerophospholipid metabolism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA